News register
Search section
Search area
News Type
News type
Search date
Search word OR
List of related articles
Contents of related articles
No info was found
List of related articles
Contents of related articles
No info was found
View details
Information

04/02/2018 HYU News > Academics > 이달의연구자 Headline News

Title

[Researcher of the Month] Controlling Hydrogen in a Chemical

Professor Suh Young-woong (Department of Chemical Engineering)

온정윤

Copy URL / Share SNS

http://www.hanyang.ac.kr/surl/NIYX

Contents

During the 2018 Pyeongchang Winter Olympics, Hyundai allowed free trial rides of NEXO, their new fuel cell vehicle, to twenty thousand people, deriving huge attention and public interest on the new innovation of hydrogen-powered fuel cell vehicles. A total of 733 vehicles were reserved on the 19th of March which was the first day of sale by pre-order. This attention to fuel cell vehicles has also increased the interest in the methods the consumers can receive their fuel: hydrogen. Professor Suh Young-woong (Department of Chemical Engineering) introduced a novel method of the transfer of hydrogen through his research, "2- (N-Methylbenzyl) pyridine: A Potential Liquid Organic Hydrogen Carrier with Fast H2 Release and Stable Activity in Consecutive Cycles."
 

Suh's research paper was published in the ChemSusChem journal.


Hydrogen is the main fuel cars like NEXO require in order to run. However, researchers face an immense difficulty when working with this sensitive gas. Hydrogen is great when powering the car itself. However, the transport of this gas requires much pressure and delicacy. For example, if hydrogen is made in Ulsan, it needs to be transported to major cities such as Seoul, since people will need to charge their cars. In order to transport this hydrogen, the gas needs to be pressured under 700 bars (the unit of measuring pressure), with specially produced tanks. This presents the danger of enormous explosion as well as economic problems.
 

Collaborating with three other universities to alleviate these current concerns, Suh helped introduce a new chemical substance that can store and release hydrogen safely. This new chemical material allows hydrogen to inflow and release within itself at a certain temperature. This results in a massive improvement over the current status as it can transport much more hydrogen in a single tank, with much more safety. Moreover, they can release hydrogen from the chemical at 230 degrees Celsius, while the present technology requires a temperature of 270 degrees Celsius. This chemical material can even be reused up to a hundred times, which even makes it more efficient.
 

The image of the new chemical structure The two arrows are showing the inflow and the release of Hydrogen.
(Photo courtesy of Suh)


This research took each of the three teams one and a half years to finish. They had to go through endless trial and error procedures with seven different chemicals. “There wasn't any preliminary research we could have referenced. Some chemicals didn't work, and some chemicals would work but released hydrogen at the same 270 degrees Celsius,” reminisced Suh. As a result of their efforts, Suh was able to find a method that could inpour and discharge hydrogen from the chemical. This chemical is not yet fully developed in its validity. However, this is the closet chemical that is on the verge of commercialization.
 

"Communicate with a lot of people and practice reading and writing!"


Suh is currently researching not only the storage of hydrogen, but the creation of hydrogen itself. His research team is working on producing hydrogen from biomass, which is organic matter whose residual energy can be harvested to produce consumable energy. He is trying his best to develop technology related to hydrogen, an alternative fuel the whole world is anticipating. “As a professor, I want to produce a lot of outstanding researchers to conduct better research in society,” said Suh. “And to all Hanyangians, I wish for each and every one of you to find your own unique path and to fully dedicated yourself to it!”




On Jung-yun          jessica0818@hanyang.ac.kr
Photos by Kang Cho-hyun
Copy URL / Share SNS

0 Comments