News register
Search section
Search area
News Type
News type
Search date
Search word OR
List of related articles
Contents of related articles
No info was found
List of related articles
Contents of related articles
No info was found
View details
Information

08/07/2018 HYU News > Academics > 이달의연구자

Title

[Excellent R&D] Developing Revolutionary Energy Harvesters

Professor Sung Tae-hyun, Division of Electrical & Bioengineering

박주현

Copy URL / Share SNS

http://www.hanyang.ac.kr/surl/t8jg

Contents
As it is a global agenda to adopt a lifestyle that is more environmentally friendly, developing technology that allows eco-friendly processes and production outcomes has also shifted into focus. Professor Sung Tae-hyun's (Electrical Engineering) research on energy harvesting technology is a prime example that shines a ray of hope onto our path of sustainable development.
 
According to research from Cambridge University, only 12 percent of electric power generated from a power plant is used, while the other 88 percent goes to waste. Consequently, "energy harvesing," the idea of saving and using the wasted energy, has become a crucial research topic for more effective and efficient use of energy generated. It would eiminate concerns about creating a completely different type of power plant or unintentionally harming the environment. "Energy harvesting technology will allow us to convert various types of wasted energy into usable energy,” said Sung.
 
Sung Tae-hyun (Electrical Engineering) explains the different types of energy and how massive an amount of it is wasted.

 There are different types of convertible energies such as piezoelectric energy (electric energy created from vibration), heat energy (electric energy created from heat), and photovoltaic energy (electric energy created from lighting). Sung focused on piezoelectric and photovoltaic energy when researching energy harvesting technology. The purpose of his research was to successfully create an "energy harvestor" with a sensor that detects the different types of energy, then converts them accordingly to electric energy that is entirely usable and more environmentally friendly. “Sensor technology is actually the core of the Fourth Industrial Revolution since everything is connected through internet of things (IoT). It can detect anything anywhere without limitations, and that’s what would make the energy conversion process more efficient, especially in places where all types of energy are generated.”
 
Energy harvestors demonstrated in a smart factory
(Photo courtesy of Sung)

Sung is in charge of Hanyang University's (HYU's) SEED laboratory that researches energy harvesting technology. In 2011, it even broke a record for retaining the world’s best piezoelectric energy harvesting data. According to Sung, he approached the energy waste problem by first communicating with the workers in the field, detecting and redefining the problem at hand, moving on to the ideation process, creating prototypes, and then testing it out to see if it was realistically applicable and effective. Sung is now in the process of testing out the developed energy harvestors in four big industries such as LED production, smart factories (industry where the whole production process is combined with digital automation solutions), and industries where both offices and production scenes are located in the same building and power plants. “Currently, we are working on the development and commercialization of applicable IoT sensors applied to energy harvestors, but we hope to create harvestors with massive energy conversion capacity in the future. Not letting any energy go to waste is the main goal,” said Sung.
 
Sung explains the application process of energy havestors in various industries.

Behind Sung’s passionate research, there was a strong drive that was truly inspirational. “Our lab is called the SEED lab, like the seed in an apple. You may know how many seeds are generally in an apple, but you never know how many of them will actually become an apple. It is the work of a miracle, and that is the kind of miracle that our lab members wish to achieve together. I ask myself, what kind of fruit am I expecting in 10 or 20 years when I’m planting this seed? In other words, what is my goal in life that takes the form of the fruit? There are so many people that eat the seed before it grows just to fulfill their self-interest. I’d say that those people are myopic, as they may be full and satisfied for the moment, but they will not be in the future. It sure takes a long time to grow and harvest the seed, but once it grows and starts to bear fruit, a never-ending cycle begins. One seed will bear hundreds of fruits ever year. So the next question is, how will you use these fruits? For me, that’s the question of what I want to achieve in my life, and my life goal is to give back the fruits I’ve harvested to the society, and spread the happiness.”
Sung talks about his beliefs and philosophy, ending with some inspirational advice for Hanyang students.

 “I hope that I can share this belief with the Hanyang community. I hope that we can work together to grow the seeds of Hanyang into a strong tree that will bear many fruits, and spread the miracle to the world. That being said, I would like to tell the students not to be afraid of failure, to have a life-goal that can change the world, not to be devastated from failure, to always be positive but not conceited nor arrogant, and to love challenges. Our body is systematically goal-oriented, and once we have a goal, it becomes our drive to keep going even when we are tired. On top of that, if you think that our purpose in life is for the happiness of our community, then you will become a true global leader.”



Park Joo-hyun       julia1114@hanyang.ac.kr
Photos by Choi Min-ju
 
Copy URL / Share SNS

0 Comments