News register
Search section
Search area
News Type
News type
Search date
Search word OR
List of related articles
Contents of related articles
No info was found
List of related articles
Contents of related articles
No info was found
View details
Information

07/30/2018 HYU News > Academics > 이달의연구자

Title

[Researcher of the Month] Observation of Unique Properties of Anti-PT-Symmetric Systems

Professor Song Seok-ho (Department of Physics)

최서용

Copy URL / Share SNS

http://www.hanyang.ac.kr/surl/MpIg

Contents
Professor Song Seok-ho (Department of Physics) has recently announced his research on the observation of an Anti-Parity-Time (APT)-Symmetric exceptional point and energy-difference conserving dynamics in electric circuit resonators.

When dividing an electric circuit in half, the two parts show a symmetric stream in both time and space. This is referred to as Parity-Time (PT) Symmetry, which enables electricity to flow in the same stream in both directions inside an electric circuit. By "breaking" the unidirectional converter, the symmetric stream of the forward and backward propagation differs, and the PT-Symmetric form is broken.
This picture shows the breaking of the Parity-Time (PT) - symmetric form and how the flow of light changes. By breaking the symmetric middle part, the forms of foward and backward propagation differ, which allows for the creation of diodes.
(Photo courtesy of Song)

Breaking the PT-Symmetric form allows for the creation of diodes which are semiconductor devices that allow electricity to flow only in one direction and prevent any form of backward propagation. Being a key element of the flow of electricity within an electric circuit, the creation of photodiodes has been a long-term goal in the field of nanophotonics.

Based upon the idea of substituting electricity with light, which would allow electric devices to be used with higher speed and energy efficiency, nanophotonics have long been troubled with a loss of energy due to the absence of diodes which allow the efficient flow of energy. Thus, Song’s current research of creating diodes through the "breaking" of PT Symmetries has significance, as it may provide a foothold for the creation of photodiodes.

Song has verified his research by successfully breaking symmetries within electric circuits formed with resistance-electric condensers. The experimental process was made as simple as possible based upon the professor’s belief that easy verification leads to easy commercialization. “It is the process of thinking out ideas that should be given effort, whereas the experimental process should be done with ease,” explained Song. This can be seen in the fact that only simple devices with educational purposes were used in the verification of this research.
 
Professor Song Seok-ho shared his research philosophy of the making process which should receive the bulk of time and effort. On the other hand, he mentioned that the experimental process should be conducted as simply as possible, as simple verification leads to simple commercialization.  

When asked of his future plans, Song explained how he has managed to break through one mere field of nanophotonics. He also maintained that “there are so many fields to overcome. By applying concepts to each field, breaking through the current limitations of physics is my next goal.” Succeeding with the observation of anti-PT-symmetries, it does not seem like it will be long before Song provides another foothold towards a novel breakthrough in the field of nanophotonics.  



Choi Seo-yong     tjdyd1@hanyang.ac.kr
Photos by Choi Min-ju
Copy URL / Share SNS

0 Comments