News register
Search section
Search area
News Type
News type
Search date
Search word OR
List of related articles
Contents of related articles
No info was found
List of related articles
Contents of related articles
No info was found
View details
Information

09/25/2017 HYU News > Academics

Title

A Tactile Sensor for Texture Recognition

Engineering for the sense of touch

전채윤

Copy URL / Share SNS

http://www.hanyang.ac.kr/surl/8NMN

Contents
With computers today, auditory and visual senses can be materialized—through sound and screens. The other three of the five senses, on the other hand, have not yet been on the platform of materialization because they require a somewhat more delicate mechanism and are harder to deliver with technology. Professor Park Wan-jun (Department of Electronic Engineering), in his paper,  “A tactile sensor using single layer graphene for surface texture recognition”, presented and elaborated on a tactile sensor that could distinguish different materials, which opens many doors for future technology.

It is hard to imagine the sense of touch being delivered with a machine because it is usually perceived as something only humans are capable of. But why can sound and sight be materialized by computers but not touch? The answer is, electronic signals for sound and vision are made possible in the aspect of engineering, while that of touch is not. What Park presented in his paper is a small chip-like device that enables perception of touch for surface texture recognition.
 
The output of Park's research, which is a chip-like electronic device.
(Photo courtesy of Park)

The first thing he had to do, according to Park, was to turn the sense into electronic signals. Only then can the machine read what is being conveyed. Once the signal of touch is conveyed to the device, it will analyze the signal and distinguish what kind of texture it is. The subtle and clear differences in terms of texture between various kinds of surfaces can be perceived and distinguished by the tactile sensor, detecting the microscopic scale of differences.

There is a single layer of graphene embedded in the device, which creates a different resistance variation each time a surface comes to interaction. It is what functions as the main player in telling apart different surfaces because it is what creates the different signals. The signal is then sent to the computer by the chip, which is to be analyzed and categorized into different kinds of textures. “Just as there is virtual reality (VR) for sight, a touch-version will be possible with this device,” anticipated Park. “A tactile display is also possible with this device, as the signal for touch is now readable by the computer. If you put your hand on the tactile display device, you can actually feel whatever the object or texture input in the computer is,” envisaged Park.

This technology is also applicable in the medical field. Those who lost their sense of touch in certain parts of their body by burns, for example, will be able to regain their sense by implanting this small device in the portion of injury. Now that the signals of touch can be read by the device and since senses can be transmitted in the form of signals, delivery of the sense of touch is made possible. The inserted chip will send signals to the brain and this will enable the patient to feel what is being touched.

“In recap, this research of mine has provided a human-sensorlike device that will enable transmission of the sense of touch in terms of engineering. Now I’m currently working on machine learning by categorizing and classifying different textures into groups and making the device absorb the data. The ultimate goal of my research is to complete materializing the sense of touch from the perspective of engineering so that further technologies could be developed based on my research,” planned Park.
 
Park's further research is set on mechanizing the sense touch.




Jeon Chae-yun        chaeyun111@hanyang.ac.kr
Photos by Choi Min-ju
Copy URL / Share SNS

0 Comments