관련기사 등록
검색섹션
검색영역
기사등급
기사형태
검색영역
검색단어 또는
관련기사 검색결과 리스트
관련기사 검색결과 리스트 컨텐츠
검색된 정보가 없습니다.
관련기사 검색결과 리스트
관련기사 검색결과 리스트 컨텐츠
검색된 정보가 없습니다.
게시글 상세보기
정보

2016/03/09 한양뉴스 > 학술 > 이달의연구자 중요기사

제목

[이달의 연구자] 꿈의 배터리, 리튬 에어 배터리 상용화의 초석을 다지다

3월 이달의 연구자 선양국, 이윤정 교수(공과대 에너지공학)

이종명

URL복사/SNS공유

http://www.hanyang.ac.kr/surl/Y1F

내용
우리 주변에는 수많은 첨단 제품들이 자리 잡고 있다. 사람이 움직이기 위해 음식이 필요한 것처럼, 첨단 제품이 움직이기 위해서도 ‘에너지’가 필요하다. 이 에너지 역할을 하는 것이 배터리다. 현재 상용화된 배터리 형태는 리튬 이온 배터리. 리튬 이온 배터리 보다 높은 성능을 자랑하는 리튬 에어 배터리가 있으나, 효율성이 떨어져 상용화되지 못했다. ‘차세대 배터리’ 혹은 ‘꿈의 배터리’라 불리는 리튬 에어 배터리. 선양국 교수와 이윤정 교수(이상 공과대 에너지공학)의 공동연구로 효율성 문제를 해결할 실마리를 찾았다.

경제성과 성능 두 마리 토끼를 잡다.

▲ 리튬 에어 배터리는 기존의 리튬 이온 배터리와는 달리 양
극의 재료로 산소를 사용한다
.

기본적으로 배터리는 양극과 음극, 전해질(물 등의 용매에 녹아 이온으로 나눠져 전류를 흐르게 하는 물질)의 세 부분으로 구성된다. 세 부분을 구성하는 물질에 따라 이름이 달라진다. ‘니켈 카드뮴 배터리’, ‘리튬 폴리머 배터리’, ‘리튬 이온 배터리’ 등이다. 리튬 이온 배터리는 음극 재료로 탄소 물질인 그라파이트가, 양극 재료로 리튬 금속 산화물인 미켈, 코발트, 망간 등이 쓰인다. 전해질로는 비수계 전해액(물 분자가 포함되지 않은 전해액)이 쓰인다. 충전 상태에서는 음극의 리튬 이온이 전해질을 통해 양극으로 이동하며 에너지를 발생시킨다. 양극으로 이동한 리튬 이온을 음극으로 돌려보내면 방전된 배터리가 충전된다. 리튬 이온 배터리는 지난 1991년 상용화됐고, 이후 연구와 발전을 거듭해 현재 가장 많이 사용되는 배터리가 됐다.

다만, 리튬 이온 배터리는 대형화가 어렵다는 문제가 있다. “기본적으로 리튬 이온 배터리의 양극 물질로 쓰이는 미켈, 코발트, 망간 등이 굉장히 비쌉니다. 노트북이나 스마트폰 등에 쓰이는 소형 배터리는 문제 되지 않겠지만, 전기자동차에 이 배터리를 사용한다면 가격이 문제가 되겠죠. 스마트폰 배터리의 6,800배~7,000배 크기의 배터리를 사용하게 되니까요.” 선양국 교수의 설명이다.

그 대안으로 등장한 것이 리튬 에어 배터리다. 리튬 에어 배터리는 음극 재료로 리튬 메탈을 사용하고, 양극 재료로 탄소 지지체 안의 산소를 사용한다. 전해질은 비수계 전해액이 사용된다. 리튬 이온 배터리가 양극 재료로 미켈 등 비싼 금속 산화물을 사용하는 것과 달리, 리튬 에어 배터리는 공기 중에 널리 퍼져있는 산소를 사용하는 것이 가장 큰 차이다. 경제성 면에서 우월할 수밖에 없다. 에너지 밀도 면에서도 차이가 난다. 리튬 에어 배터리는 리튬 이온 배터리보다 3-5배에 달하는 에너지 밀도를 자랑해 성능이 더 높다.

에너지 효율의 문제를 해결하다

리튬 에어 배터리는 이런 장점 덕에 ‘꿈의 배터리’라고 불린다. 그러나 대표적인 문제점으로 꼽혀온 것이 ‘효율성’이다. 이 교수는 말한다. “리튬 이온 배터리는 100을 충전하면 99.99를 쓸 수 있을 만큼 높은 효율성을 보입니다. 그러나 리튬 에어 배터리는 100을 충전하면 60 정도만 사용할 수 있어요. 이 점이 상용화에 큰 걸림돌이 되었죠.” 리튬 에어 배터리의 효율성이 낮은 이유는 리튬 이온이 음극에서 양극으로 이동할 때, 양극의 산소와 반응하며 과산화리튬(Li2O2) 산화물을 생성하기 때문이다. 과산화리튬은 전기가 통하지 않는 비도체 물질이라 에너지 이동을 방해한다. 이런 이유로 과산화리튬을 어떻게 처리하느냐가 배터리 효율성을 높이기 위한 연구 목표가 됐다.

▲ 이리듐 나노 촉매는 리튬 이온과 산소와의 반응에서 과산화 리튬(Li2O2) 대신 초산화 리튬(LiO2)이 생성되도록 한다.

선 교수 와 이 교수는 양극의 산소 지지체에 새로운 소재를 도입했다. 탄소물질인 그래핀에 이리듐 나노 촉매를 혼합한 것. 탄소 물질인 그래핀은 넓은 표면적으로 리튬 에어 배터리의 용량을 극대화할 수 있으며, 뛰어난 전도성으로 저항을 최소화해 에너지 효율을 증대시킨다. 또, 이리듐 나노 촉매는 리튬 이온과 산소 반응에서 특별한 역할을 해낸다. 이윤정 교수는 이리듐 나노 촉매의 역할에 대해 다음과 같이 설명했다. “기존의 반응에서 과산화리튬이 발생하는 것과 달리, 이리듐 나노 촉매는 초산화 리튬(LiO2)이 생성되게 합니다. 초산화 리튬은 전도도가 높을뿐더러 리튬과 산소로 분해되기 쉬워요. 에너지 효율을 크게 향상시킬 수 있죠.”

물론, 에너지 효율을 향상시켰다고 리튬 에어 배터리의 상용화가 즉시 가능한 것은 아니다. 아직까지 해결해야 할 산은 많다. 그러나 선 교수는 “이번 연구는 기존의 리튬 에어 배터리 패러다임을 바꾸고, 앞으로 리튬 에어 배터리 개발 연구에 지대한 영향을 끼칠 것”이라고 말했다. “이번 연구는 리튬 에어 배터리 상용화의 첫걸음이라고 볼 수 있습니다. 앞으로 더욱 깊이 연구해 리튬 에어 전지의 상용화에 힘쓰고 싶습니다.”

무엇이든 꾸준히 하는 노력이 필요

이 교수는 현재 리튬 에어 배터리가 들어간 전기자동차의 시운전을 위해 연구를 계속하고 있다. 사람들의 삶을 바꿀 수 있는 연구가 목표라고 한다. “예전에 외국에서 공부를 할 때 한 교수님이 ‘논문을 잘 쓸 생각을 하지 말고 세상을 바꿀 수 있는 아이디어를 생각하라’고 얘기해주신 적이 있어요. 저도 그분 말씀처럼 세상을 바꿀 수 있는 연구를 하고 싶습니다. 전기자동차의 배터리 연구도 그 중 하나가 될 수 있겠죠”

물론 이러한 연구가 한 번의 노력, 한 번의 시도로 완성되는 것은 아니다. 1980~90년대 한국에서 배터리 산업은 중소기업의 전유물이었다. 그러나 외국에서는 파나소닉 등의 대기업에서 배터리를 연구하고 개발하는 중이었다. 선 교수는 1991년 소니의 리튬 이온 배터리 상용화 발표를 보고, 한국에서도 배터리 개발에 착수해야 한다는 생각을 갖게 됐다고. “제가 연구를 시작할 무렵 우리나라에서 배터리 연구를 하는 사람은 거의 없었어요. 당시 다른 사람의 말에 좌지우지됐으면 지금의 연구 결과는 없었을 거예요.” 선 교수는 남들과는 다른 ‘창의성’이 인생의 큰 동력이라고 조언했다. “인생도 이와 비슷하다고 생각해요. 열정과 노력, 그리고 남들과는 다른 창의성을 가지고 살아가다 보면 언젠가는 자신만의 고유한 결과물이 생길 거라고 생각합니다. 우리 학생들도 이러한 마음가짐으로 열심히 노력했으면 좋겠어요.”

▲ 배터리 연구에 매진하고 있는 선양국 교수(공과대 에너지공학)와 이윤정 교수(공과대 에너지공학)를 지난 26일과 이번 달 1일 본인의 연구실에서 만날 수 있었다. 두 교수 모두 단기적인 시각보다 미래를 보면서 꾸준히 정진하는 노력의 필요성을 얘기했다.

글/ 이종명 기자           tmjo2000@hanyang.ac.kr

                           이 기자의 다른 기사 보기

사진/ 김윤수 기자        rladbstn625@hanyang.ac.kr

      최민주 기자         lovelymin12@hanyang.ac.kr

디자인/ 조유미 기자      lovelym2@hanyang.ac.kr


 

URL복사/SNS공유

기사댓글 0