전체 345건
뉴스 리스트
게시판 리스트 컨텐츠
2019-01 11 중요기사

[일반]한양대 제15대 총장에 김우승 교수 선임 (2)

학교법인 한양학원(이사장 김종량)은 최근 이사회를 열고 한양대학교 제15대 총장에 김우승(사진·62) ERICA캠퍼스 공학대학 기계공학과 교수를 선임했다고 11일 밝혔다. 김 신임 총장은 이영무 14대 총장에 이어 오는 3월 1일 취임하며 임기는 4년이다. ▲ 김우승 신임 총장 한양대 기계공학과 졸업 후 미국 노스캐롤라이나주립대에서 박사학위를 받은 김 신임 총장은 1991년 모교 교수로 부임했다. 2011~15년 ERICA 산학협력단장, 2012~16년 ERICA LINC사업 단장, 2017~18년 ERICA 부총장 겸 PRIME사업단장을 역임했다. 또 교내 학술‧연구 분야에서의 업적을 인정받아 최우수 교수상과 HYU학술상을 받았으며, 산(産)·학(學)·연(硏) 협력형 캠퍼스 모델을 제시한 공로로 지난 2011년 홍조근정훈장을 받았다. 김 신임 총장은 “지금까지 쌓아온 한양의 성과와 발전을 계승하고 구성원의 동반 발전을 통해 모두가 함께 성장하는 대학을 만들겠다”고 포부를 밝혔다. 산학연계 교육과 연구혁신을 통한 실용인재 육성을 목표로 하는 김 신임 총장은 한양대 발전을 위해 ▲수요자 중심 교육 생태계 조성 ▲연구기자재 확충을 통한 Life Science 연구기반 구축 ▲사회혁신을 선도하는 인재 양성 ▲산학연계 창업시스템 활성화 등을 세부목표로 제시했다.

2018-12 31 중요기사

[학술][이달의 연구자] 최재훈 교수(생명과학과)

동맥경화는 혈관에 지질(동식물 조직에 있는 지방)이 쌓여 동맥이 좁아져 심근경색, 뇌경색과 같은 병을 유발하는 만성 염증성 질환이다. 최재훈 교수(생명과학과)는 동맥경화 병변으로 인해 나타나는 대식세포의 특성과 분리 방법을 지난 2012년부터 연구했다. 7년에 걸쳐 진행된 최 교수의 연구 논문 ‘Transcriptome analysis reveals nonfoamy rather than foamy plaque macrophages are proinflammatory in atherosclerotic murine models’는 심혈관 분야의 세계적 권위지 ‘서큘레이션 리서치(Circulation Research)’ 2018년 10월호에 게재됐다. ▲최재훈 교수(생명과학과) 연구팀은 이번 연구를 통해 보통의 대식세포는 염증을 유발하는 반면, 혈관 내 지질을 섭취한 대식세포는 더 활발하게 식작용을 일으켜 염증 유발을 완화한다는 사실을 밝혀냈다. 동맥경화의 새로운 치료방안 지속해서 고지혈증(혈액 중 지방량이 많은 상태)을 앓아온 환자들은 대부분 동맥경화까지 얻게 된다. 고지혈증 환자의 혈관에 지질이 쌓여 염증이 생기면 면역세포인 대식세포는 손상된 조직을 처리하기 위해 혈관으로 모여든다. 처리 과정에서 지질을 삼킨 대식세포는 몸집이 커져 포말세포(Foamy cell)가 된다. 그동안 동맥경화는 포말세포가 염증 반응을 촉진한다고 알려졌고, 대부분의 연구는 포말세포형성을 줄이는 데 초점이 맞춰져 있었다. “동맥경화증을 앓는 환자 혈관에 포말세포가 많이 발견되니까 포말세포형성을 억제해야 병이 낫는다고 생각한 거죠.” 그의 이번 연구 결과는 기존의 동맥경화증 연구 방향을 뒤집었다. 최 교수 연구팀은 포말세포 형성 후에는 오히려 혈관 내 염증반응이 줄어들고, 혈관에 쌓인 지질을 배출하는 능력이 증가한다는 것을 발견했다. 포말세포가 아닌 이전 단계의 대식세포(Nonfoamy cell)에서 염증반응을 억제해야 한다는 것이다. 전문 인력과 인프라가 확충됐으면 최 교수팀은 개별적인 세포 개체의 유전자 발현을 분석할 수 있는 ‘단일 세포 RNA 시퀀싱’(Single cell RNA sequencing) 기술을 사용하기 위해 2017년 1월부터 약 1년간 미국 워싱턴 대학교(Washington University in Saint Louis)에서 연구를 진행했다. 아직 한국에서는 위 기술을 다루는 전문가와 기술이 부족했기 때문이다. “워싱턴 대학교를 비롯한 미국 유수 대학들이 계속 세계적인 바이오 연구 결과를 낼 수 있는 것은, 최첨단 연구 장비와 이를 관리할 수 있는 뛰어난 전문인력들이 확보됐기 때문입니다.” ▲최재훈 교수(생명과학과)는 생명과학에서 중요한 것은 살아있는 생체 안에서 일어나는 현상이 정확하게 분석되는 것이라며 오래 걸리더라도 의미 있는 연구를 하는 것이 중요하다고 덧붙였다. 최 교수의 연구 철학 최 교수는 수의과학대학교에서 학부와 대학원 시절을 보내면서 동물과 사람의 질환에 호기심을 가졌다. “생체 안에서 일어나는 현상을 발견하고 분석하고 싶었어요.” 최 교수는 현재 노령화 시기에 가장 많이 발생하는 심장 판막질환과 그 외 다양한 염증성 질환을 연구하고 있다. 끝으로 최 교수는 한양대학교 학생들이 논문을 한 편 쓰더라도 유용하고 의미 있는 내용을 담길 권했다. 생체 질환을 연구하면서, 더욱 많은 질환 극복에 도움이 되고 싶은 그의 연구 철학이 담겨있는 말이다. “시간이 걸리더라도 개의치 말고 꾸준히 하세요. 다른 연구자들이 많이 인용할 수 있는 논문을 작성하고, 과학사회에 영향력 있는 연구를 했으면 좋겠습니다.” 글/ 옥유경 기자 halo1003@hanyang.ac.kr 사진/ 이진명 기자 rha925@hanyang.ac.kr

2018-12 24 중요기사

[학술][연구성과] 정은주 교수(산업융합학부) (1)

음악의 아버지 바흐(J. S. Bach)의 작곡 기법 중 하나인 푸가(fugue)는 하나의 주제를 여러 성부가 돌아가며 모방하는 다성음악이다. 기존의 성부에 다른 성부들이 더해질 때마다 각 성부를 듣기 위해 뇌에서는 선택적 지각(知覺)이 일어난다. 정은주 교수(산업융합학부)는 ‘음악에 대한 산소 대사 반응과 후천성 뇌 손상 환자의 선택적 지각의 관계’를 연구하고 그 결과를 세계적 과학학술지 ‘네이처’ 자매지인 사이언티픽 리포트(Scientific Reports)에 발표했다. 음악으로 선택적 지각을 검증하다 정은주 교수(산업융합학부)는 정상 성인과 후천성 뇌 손상 환자가 음악을 듣는 동안 발생하는 대뇌 혈류 내 옥시헤모글로빈(HbO₂)과 디옥시헤모글로빈(HHb)의 변화를 측정해 선택적 지각 능력을 검증했다. 실험이 진행되는 동안 참가자들은 바이올린, 피아노, 플루트 등의 악기 중 하나의 선율만으로 구성된 연주와 두 개의 선율로 이루어진 이중주를 듣고 선율이 흐르는 방향을 맞춘다. 음악에 집중하게 되면서 뇌에 흐르는 혈액 속 산소를 품은 ‘옥시헤모글로빈’은 세포에 산소를 전달하고 ‘디옥시헤모글로빈’으로 변한다. ▲ 정은주 교수(산업융합학부)는 정상 성인과 후천성 뇌 손상 환자가 선택적 지각을 수행할 때 뇌에서 어떤 일들이 일어나는지를 연구했다. 이번 연구는 음악에 대한 대뇌 반응을 사용해 인간의 인지기능 이상을 측정하는 ‘바이오마커(Bio-marker)’를 발굴하는 데 목표를 두고 있다. 바이오마커는 단백질, DNA, 대사 물질 등을 이용해 체내변화를 알아낼 수 있는 지표다. 정 교수는 음악에 대한 대뇌 산소 대사 반응 또한 인간의 운동, 인지, 정서 등을 진단하는데 활용할 수 있다고 설명했다. 뇌과학과 공학이 만나다 후천성 뇌 손상 환자들이 두 개의 선율 중 특정 악기의 음색을 변별하자 왼쪽 배측면 전전두엽 피질(left dorsolateral prefrontal cortex)의 산소 대사가 정상 성인에 비해 유의하게 증가했다. 이곳은 청각 정보를 처리하는 일에 관여한다. 정 교수는 “주의집중력, 기억력 등 후천성 뇌 손상 환자의 다양한 인지기능 저하가 선택적 지각 기능 이상에서 비롯됐다는 가능성을 시사한다”며 “음악에 대한 산소 대사 반응이 인지 기능을 진단할 뿐 아니라 훈련과 재활 경과를 관찰할 수 있을 것으로 기대한다”고 말했다. ▲ 왼쪽은 정상 성인, 오른쪽은 뇌손상 환자 뇌 모습이다. 두 개의 선율 음악을 들었을 때 뇌손상 환자의 뇌에서 산소 대사량이 평소보다 높게 측정됐다. (정은주 교수 제공) 정 교수는 참가자들의 혈액 속 산소 대사를 관찰하기 위해 기능적 근적외선 분광기법(fNIRS)을 사용했다. 비슷한 용도인 자기공명영상(fMRI)보다 휴대가 쉽고, 이동이 간편하며, 저렴하지만 아직 분석 방법론이 충분히 개발되지 않았다. 정교한 분석의 필요성을 느낀 정 교수는 공학 분야의 ‘Vector-Based Phase Analysis’을 차용했다. “새로운 분석 방법을 발굴하고 임상 적용의 근거를 확립하는 데에 어려움이 있었지만, 체계적이고 융합적인 접근을 통해서 해결할 수 있었습니다.” 세상을 무대 삼은 피아니스트 환자에게는 치료도 고통의 연속이다. 검사와 재활 훈련은 아픈 부위를 끊임없이 느끼게 하기 때문이다. 정 교수는 “친숙하고 자연스러운 음악 감상을 통해 환자의 상태를 정확하게 평가할 수 있고, 자발적인 참여까지 끌어낼 수 있을 것으로 기대한다”고 말했다. 학부 시절 기악과에서 피아노를 전공한 그는 “음악은 예술 작품으로서 심미적 경험을 제공하는 것을 넘어 인간의 삶을 위한 유용한 도구로 활용될 수 있다”며 “소수의 한정된 사람들과 음악을 공유하는 것이 아쉬워 무대에서 내려왔다”고 말했다. ▲ 정은주 교수(산업융합학부)의 최종 연구 목표는 음악으로 행복해지는 세상을 구현하는 것이다. 정 교수는 음악으로 행복해지는 세상을 구현하기 위해 노력한다. 그는 음악을 사용해 사회 문제를 해결하는 기술을 개발하는 데 힘쓰고 있다. 국립재활원에서 가상현실(VR)에 기반한 음악 치료 콘텐츠를 제공해 뇌졸중 환자들을 돕고 있다. 또 치유에 대한 사회적 관심 증대에 발맞춰 일반 환경에서도 경험할 수 있는 청각과 진동을 활용한 ‘다중 감각 힐링 스페이스 구축 연구’도 진행 중이다. 정 교수는 “그동안 연주를 하며 경험했던 아름다움을 이제 연구를 통해서 더 많은 사람과 나누고 싶다”고 전했다. 글/ 유승현 기자 dbtmdgus9543@hanyang.ac.kr 사진/ 강초현 기자 guschrkd@hanyang.ac.kr

2018-12 10 중요기사

[학술][이달의 연구자] 선양국 교수(에너지공학과)

심각한 환경문제로 인해 에너지 저장 장치(전지) 개발은 전세계적인 화두다. ‘리튬 이온 전지’는 휴대용 전자기기 및 전기 자동차의 주된 에너지 저장원으로 사용된다. 그러나 리튬 사용량 증가로 인해 향후 리튬의 제한된 보급률 및 급격한 가격 상승이 예상돼 리튬을 대체할 수 있는 신규 에너지 저장 장치 개발이 시급한 실정이다. 현재 선양국 교수(에너지공학과) 연구팀은 ‘소듐’에 이어 ‘포타슘 이온 전지’ 소재를 활용한 새로운 에너지 저장 장치 합성 방법을 실험 중에 있다. 신 에너지 저장 장치 ‘포타슘 이온 전지’ 선양국 교수(에너지공학과)와 황장연 박사(에너지공학과)가 연구 중인 ‘포타슘 이온 전지’는 포타슘 이온을 포함하는 고전위 산화물 기반 양극, 포타슘 이온을 저장하는 저전위 탄소 기반 음극, 그리고 포타슘 이온을 전달하는 비수용액계 전해질과 분리막으로 구성돼 있다. 포타슘은 풍부한 매장량과 낮은 환원 전위 특성을 가진다. 리튬을 사용할 때와 충∙방전 매커니즘이 비슷해 현재 보편적으로 사용하는 리튬 이온 전지보다 더 나은 성능을 가진 대체물로서 가장 유망한 후보로 각광받고 있다. ▲ 선양국 교수 연구팀이 개발한 양극 소재인 'K0.69CrO2' 와 기존 문헌에 보고된 포타슘 이온전지 양극 소재들 간의 충/방전 특성 비교. 개발된 소재는 기존 소재들 대비 월등한 충∙방전 횟수를 나타낸다. 하지만 리튬 대비 상대적으로 큰 포타슘 이온의 크기(Li : 0.76 Å vs K : 1.38 Å)는 양극 소재의 합성을 어렵게 해 전기화학반응을 일으키기 쉽지 않다. 원소 주기율표 상으로 볼 때 리튬, 소듐, 포타슘 순으로 알칼리가 내려가면서 이온의 크기가 커진다. 부피와 무게가 커짐에 따라 전지 안으로 이온 저장이 힘들어 발현하는 에너지의 양도 적어진다. 또한 포타슘이 공기 중에서 물이나 산소에 반응성이 높기 때문에 더욱 합성이 어렵다. 이 특성은 충전과 방전이 계속되면서 소재에 손상마저 입힌다. 이러한 이유로 포타슘 이온 전지용 양극 소재 개발이 제한돼 왔다. 그러나 선 교수는 이러한 한계점들을 극복하면 전지의 에너지 양을 대폭 향상할 수 있을 것이라고 생각했다. ▲ 선양국 교수(에너지공학과)의 연구 분야는 소듐 이온 전지와 포타슘 이온 전지다. 자원량이 한정적인 리튬으로 만든 이온 전지와 달리 소듐과 포타슘은 매장량이 풍부해 리튬의 대체제로 사용될 가능성이 높다. (사진 선양국 교수 제공) 결합을 통한 탁월한 소재(K0.69CrO2) 개발 “포타슘만으로 이뤄진 전지는 성능이 그다지 좋지 않다”며 "실제 사용할 수 있는 좋은 성능의 전지는 소듐과 포타슘의 결합으로 만들어진다"고 말했다. 결합에 대한 다양한 접근이 이루어져 왔으나 하지만 여전히 이론에 의존도가 높고, 실험적으로 소재를 합성하더라도 그에 따르는 어려움이 적지 않다. 따라서 선 교수 연구팀은 포타슘보다 상대적으로 반응성이 적은 소듐으로 만든 기존 양극 소재들을 이용하기로 했다. 이 합성법에는 전기화학 이온 교환 전지가 사용되는데 양극에 소듐이온전지용 양극을, 음극에 포타슘 메탈을 사용하여 전기화학적으로 양극 소재내에서 소듐 이온을 모두 제거하고 대신 포타슘 이온을 삽입한다. 실제로 이러한 방법을 통해 합성된 포타슘 기반의 양극 소재(K0.69CrO2)는 구조적으로 매우 안정돼 실제 1000회까지 사용이 가능했다. 이 양극 소재는 초기에 발현한 용량의 65%에 달하는 우수한 수명 유지율과 12분 내 고속 충∙방전이 가능하다는 이점도 있다.선 교수는 “양극 소재를 개발하는 관점에서 포타슘 이온을 더 효과적으로 저장하고 충∙방전 시 구조가 손상되지 않는 것이 연구의 목표”라고 말했다. ▲ 선양국 교수는 현재 연구진과 함께 계속해서 포타슘 이온 전지를 연구 중이다. (사진 선양국 교수 제공) 에너지 공학과 연구팀은 향후 포타슘 양극 소재 개발 연구의 새로운 발판을 마련했다. 선 교수는 이론적으로만 연구했던 분야를 실험적으로 가능함을 보였다. 포타슘 이온 전지가 갖는 소재로 다양한 부재를 해결할 새롭고 쉬운 소재 합성법을 제시한 것이다. 선 교수는 “현재는 크롬(Chromium)을 전이금속으로 한 소재를 사용했지만 해당 합성법은 크롬이 아닌 어떠한 전이금속으로도 결합해 사용이 가능하도록 개발했다”며 “검증된 합성법으로 향후 포타슘 이온 전지용 양극 소재 개발에 대한 더 많은 가능성과 정보를 줄 수 있는 연구”라고 덧붙였다. 글/ 김민지 기자 melon852@hanyang.ac.kr

2018-12 07 중요기사

[학생]'2018 MBA 경영사례분석대회' 한양대 ILLUSION팀, 장관상 수상

한양대 경영전문대학원의 ILLUSION팀(오정현, 최찬우, 전학희, 이종욱)은 지난 11월 29일 여의도 전경련회관 컨퍼런스센터에서 열린 '2018 MBA 경영사례분석대회'의 시상식에서 산업통상자원부 장관상을 수상했다. 시상식에는 연세대 경영전문대학원 엄영호 원장, 연세대 경영대학 이호욱 교수, 머니투데이방송 유승호 대표이사, 포스코그룹 이상춘 커뮤니케이션 실장 등 총 7명의 인사가 참석해 자리를 빛냈다. 교육부와 산업통상자원부가 후원하고 머니투데이방송과 연세대학교 경영전문대학원이 공동으로 주최한 '2018 MBA 경영사례분석대회'는 ‘포스코(POSCO)’가 주제 제시 기업으로 참여해 '그룹사의 시너지 제고를 위한 미래 신성장 사업 개발'을 주제를 놓고 참가팀들이 열띤 경연을 벌였다. 이번 대회에서 1등의 영예를 차지한 한양대 ILLUSION팀은 ‘미래가치확산과 상생발전을 위한 포스코 신사업 기획’을 주제로 수소 자동차와 미래 수송기 부품에서의 플랫폼을 구축 및 선도해서 상생경영적 프로그램을 통한 지속 성장 가능한 기업으로 도약하는 전략체계 제시했다. 이번 대회 심사위원장 이호욱 연세대 교수는 “ILLUSION팀은 환경 분석 시사점에 대해 핵심을 잘 정리했고 프로젝트의 수행 절차, 논리를 한눈에 알아볼 수 있도록 간결하게 제시하고 있는 점도 인상적이었다”고 전했다 한편, 머니투데이방송이 2009년부터 시작한 ‘MBA 경영사례분석대회’는 올해로 10년을 맞이했으며 매년 2개의 장관상을 시상해 왔다. ▲지난 11월 29일 ‘2018 MBA 경영사례분석대회’에서 한양대 경영전문대학원 재학생 팀 ILLUSION팀(오정현 외 3명)이 수상 후 관계자와 기념촬영을 하고 있는 모습.

2018-12 05 중요기사

[학술][우수R&D] 김보영 교수 (경영학부) (1)

터치 한 번으로 모든 것을 해결하는 시대다. 모바일을 통한 소비까지 가세하면서 유통 업체 간 옴니채널(Omni-channel)을 선점하기 위한 마케팅 경쟁이 치열하다. ‘옴니채널’이란 온라인, 오프라인 할 것 없이 소비자가 언제 어디서든 제품을 구매할 수 있도록 한 쇼핑체계다. 한양대 경영학과 김보영 지속가능경제연구소(Korea Institute of Sustanable Economy, 이하 KISE) 소장이 빅데이터를 활용해 소비자들의 구매 행태 변화를 좇았다. 소비재 식품 유통 사슬 연구에서 빅데이터에 이르기까지 지난 2010년 설립된 한양대 한국 지속가능경제연구소 KISE는 설립 당시 ‘식품 유통’ 연구 분야에 운영 초점을 맞췄다. '식품 안전', '식량 안보', '한국 소비재 식품 브랜드의 글로벌 브랜딩 전략'을 준비한 것이다. 한국-중국 농식품유통이 활발해질수록 식품 안전체계에 대한 관심은 높아졌고, 자연스레 김 교수는 식품 유통 공급 사슬에 주목했다. 식품 유통 시스템, 식량안보, 식품안전 이슈에 다각도로 접근하기 위해 지난 2013년에 건국대 기후변화 연구소와 연합해 식량안보 위기관리 체제에 대해 연구했다. 또한 식품 리스크 커뮤니케이션에 대한 이해관계자의 인식을 식약청과 공동으로 분석해 차별화된 전략을 도출했다. 그러던 중 4차 산업혁명으로 유통 시스템이 뒤집혔다. 소비자가 온라인과 오프라인을 자유롭게 넘나들며 제품을 구매할 수 있게 된 것이다. 이를 계기로 지난 2015년부터 KISE는 소비재 식품유통 분야에서 나아가 유통 산업 전반을 다루기 시작했다. 달라진 소비자의 구매 형태 데이터를 수집해 유통업체들이 이를 토대로 어떻게 발전해야 하는지를 연구했다. 이러한 모델링은 한·중·일에 그치지 않고, 미국과 유럽 소비자 사례까지 다루며 진행됐다. 일본 무인양품(MUJI)사의 소비자 빅데이터 연구도 그 예 중 하나다. ▲ 김보영 지속가능경제연구소(KISE) 소장은 연구소가 설립된 2010년부터 식품유통과 글로벌 마케팅 전략에 초점을 맞춰 국내 기업이 경쟁력을 지닐 수 있도록 많은 연구를 진행했다. KISE, 빅데이터를 활용한 6가지의 연구 과제 선정 지난 3월 26일, KISE는 일본 히토츠바시 대학교, 후쿠오카 대학교와 함께 옴니 채널과 빅데이터를 다루는 글로벌 포럼을 개최했다. 포럼을 통해 유통 산업 빅데이터를 활용한 6가지 연구과제를 선정했다. ▲옴니 소비자 집단 세분화(Omni consumer segmentation) ▲옴니 소비자 쇼핑 경로 분석(Customer engagement analysis) ▲고객 참여 분석(Association rule mining) ▲글로벌 브랜드 경험 연구(Global Brand experience study) ▲유통 브랜드 가치 모델링 (Building retail attribute vs Retain brand equity model) ▲ 소비자의 SNS 행태가 브랜드가치에 미치는 영향 분석(SNS effects on consumer brand preference)을 연구 주제로 삼았다. 김 교수는 6가지 연구 과제 중 이미 2개를 마친 상태다. ▲ 김보영 교수는 향후 4차 산업혁명이 한국에 가져올 유통 시스템과 소비자들의 변화를 빅데이터를 통해 예측하고 연구해야 한다고 했다. 한국 유통 기업이 글로벌 경쟁력을 갖추는 그날까지 김 교수는 앞으로 KISE의 활동에 주목해야 하는 이유에 대해 “국내 산업체 빅데이터 접근이 까다로워 지금까지 해외 기업 데이터 분석만 다뤘던 반면 KISE의 목표는 국내 기업 빅 데이터를 통해 유통, 마케팅 및 글로벌 브랜드 전략으로 글로벌 경쟁력을 강화하는 것”이라고 말했다. KISE는 2010년부터 사회과학인용색인 (SSCI)급 및 한국학술지인용색인 (KCI)급 논문을 수십 편 발표한 바 있다. “한국연구재단 Social Science Korea (SSK) 지원사업을 통해 현재 KISE의 연구과제를 진행할 수 있었다” 며 “지원이 종료되는 2020년 후에도 지속가능한 연구를 위해 KISE는 국책사업에도 도전할 예정"이라는 목표를 밝혔다. 글/ 김가은 기자 kate981212@hanyang.ac.kr 사진/ 박근형 기자 awesome2319@hanyang.ac.kr

2018-10 30 중요기사

[학술][이달의 연구자] 강영종 교수(화학과)

새로운 미래 에너지원으로 지목된 '페로브스카이트(Perovskite)'. 태양의 빛에너지를 전기에너지로 쉽게 변환해 태양전지부터 연료전지까지 활용이 가능한 특별한 구조의 금속 산화물이다. 최근 이 페로브스카이트를 활용한 다양한 연구가 활발히 진행되고 있다. 이렇게 변환된 전기에너지를 빛으로 바꾸는 우수한 발광소자 특성도 화제다. 이에 강영종 교수(화학과)는 ‘크기 배제효과 가공기술(Size-Exclusion Lithography)’을 이용한 페로브스카이트 복합소재 필름 제작기술을 새롭게 발표했다. 페로브스카이트가 가진 발광소자로서의 기존 한계점을 극복하고 디스플레이 산업에서의 상용화를 앞당겼다는 평이다. ▲ 강영종 교수(화학과)가 지난 27일 연구실에서 인터뷰를 진행했다. 이번 연구를 통해 안정성 높은 새로운 페로브스카이트(Perovskite) LED/필터 공정기술이 탄생했다. 최근 페로브스카이트가 차세대 LED 산업군에서 주목받고 있다. 다른 무기 나노입자 보다 선명한 색을 구현할 수 있기 때문이다. LED는 적색, 청색, 녹색의 다이오드를 혼합해 다양한 색상의 빛을 표현한다. 화면에 이미지를 표현하려면 서로 다른 다이오드를 정확하게 위치시키는 것이 중요한데, 이를 패터닝(patterning)이라 부른다. 기존 LED 공정에서는 얇은 기판 위에 회로를 그려 자외선을 이용해 패턴을 깎아내는 리소그래피(Lithography) 기법을 이용했다. 하지만 페로브스카이트는 수분에 매우 취약해 대기 중 산소와 습기에 불안정했다. 페로브스카이트에 적합한 새로운 공정기술이 필요했다. 강 교수는 '크기 배제효과 가공기술(Size-Exclusion Lithography)’을 이용한 페로브스카이트 복합소재 필름을 만들어냈다. 고분자 내에 페로브스카이트 나노입자를 넣어 자외선을 쬐면 나노입자의 크기 변화로 패터닝이 일어나는 기술이다. 즉, 얇은 기판 위에 코팅돼 있던 고분자는 자외선에 노출되면 체인 형태로 꼬이면서 크기가 작아지고 나노입자는 커지면서 한쪽으로 이동하게 된다. 그 과정에서 페로브스카이트 나노입자가 고유의 색을 발산하며 자체적인 패터닝이 일어나는 것이다. ▲ 강영종 교수가 개발한 '크기 배제효과 가공기술(Size- Exclusion Lithography)'을 이용한 페로브스카이트 복합소재 필름의 원리. 나노입자의 크기 변화로 페로브스카이트의 패터닝이 일어나는 기술이다.(강영종 교수 제공) 페로브스카이트는 기존 식각과정 대신 나노입자들의 자체적인 이동을 통해 수분에 강해졌다. 대기 중에 한두 시간 노출되면 사라지던 빛이, 끓는 물에 하루 정도 넣어도 그대로 유지됐다. 또한 자외선 조성을 약간만 조절하면 색상변화가 쉽게 가능해 기판에 마이크로 크기의 다양한 문양을 나타낼 수 있다. 강 교수가 연구를 시작한 지 2년 만에 높은 안정성을 갖춘 새로운 페로브스카이트 LED/필터 공정기술이 탄생했다. “이번 연구로 페로브스카이트 LED/필터 상용화에 한 발짝 다가간 거라 생각해요.” 강 교수는 앞으로 페로브스카이트와 디스플레이를 연결하는 실질적인 연구에 앞장설 계획이다. “연구는 실패가 뻔히 보이는 길일지라도 도전하고 그것을 즐기는 과정이라 생각해요. 한양대학교 학생들도 졸업 전에 연구를 통해 그런 경험을 얻어갔으면 합니다.” 강 교수는 고분자에 대한 주된 연구뿐만 아니라 다양한 분야에 열정을 가지며 스스로 국한되는 것을 경계한다. “학생들과 소통하면서 다각도에서 연구를 바라보는데 즐거움을 느낍니다. 덕분에 새로운 분야에 계속 도전하고 있죠. 앞으로 사회에 기여할 수 있는 실용적인 연구에 더 관심을 가지려 해요.” 강 교수가 보여주는 열정은 앞으로 그의 연구가 기다려지는 이유다. ▲ 강영종 교수는 여러 취미 생활을 통해 연구를 계속할 활력을 얻고 있다. 힘든 연구의 연속이지만 결과를 얻었을 때 희열을 느낀다는 강 교수의 다음 연구를 기대해본다. 글/ 황유진 기자 lizbeth123@hanyang.ac.kr 사진/ 박근형 기자 awesome2319@hanyang.ac.kr

2018-10 08 중요기사

[학술][우수 R&D] 윤동원 교수(융합전자공학부)

현대사회에서 한 나라의 국력은 정보력으로 대표되고 있다. 과거에 나라를 지키는 주된 수단이 무기였다면, 현재는 ‘정보전(Information Warfare)’으로 정보 탐지와 분석은 국가의 존립과 안보를 위해 반드시 필요하다. 이것의 근간이 되는 신호정보 기술을 윤동원 교수(융합전자공학부, 신호정보특화연구 센터장)가 국방 특화연구센터에서 연구개발 하고 있다. “국가 정보는 전술정보와 전략정보가 있습니다. 전술정보가 단기 비전의 정보인데 비해, 전략정보는 장기간에 걸쳐 연구해야 하는 장기 비전의 정보 입니다. 국가 전략정보에는 ▲영상정보 (imagery intelligence: IMINT) ▲인간정보 (human intelligence: HUMINT) ▲공개출처정보 open-source intelligence: OSINT) ▲신호정보 (signal intelligence: SIGINT)가 있습니다. 이 중 현대 국가정보에 핵심이 되는 것이 바로 '신호정보'며 이는 기술개발과 직결되는 분야 입니다.” 영화 ‘이미테이션 게임’은 국가 존립을 지키는데 신호정보 기술이 얼마나 중요한지 보여주고 있다. ▲ 윤동원 교수(융합전자공학부, 신호정보특화연구 센터장)는 신호정보 분석이 주변국과 한국의 관계에 큰 영향을 미친다고 설명했다. 신호정보(SIGINT: Signal Intelligence)는 또 다시 통신정보(COMINT), 전자정보(ELINIT), 계기 정보(FISINT)로 나뉜다. 윤 교수는 주로 통신정보를 연구한다. 통신정보는 통신신호를 수집해 분석하고 처리하여 국가 정보화 하는 기술이다. “지상, 공중, 우주 등의 환경에서 수집된 통신정보를 분석하여 이를 정보화해 처리하죠. 이를 정보화해 처리합니다." 국내에서 신호정보를 다루는 연구센터는 한양대학교가 유일하다. 한양대학교 주관, 서울대, KAIST, GIST, 연세대, 고려대 등 총 17개 대학과 34 명의 참여교수가 함께 연구한다. 한양대학교 융합전자공학과, 컴퓨터공학과 소속 교수가 주축으로 진행되고 있다. 신호정보 특화연구센터는 신호수집기술 연구실, 신호처리기술 연구실, 음성정보 연구실, 부호화 복원기술 연구실 등 총 4개의 연구실, 17개의 세부 연구과제로 구성되어 있다. 연구의 주 목적은 독자적 국가전략 정보획득 및 분석 체계 구축을 위한 기술 확보와 발전이다. 더 능률적인 신호 정보 탐지와 수집, 정보 처리 및 분석으로 신호를 국가정보화 한다. 이를 통해 국가 방위 정보력을 증대하는 것이 윤 교수가 진행하는 연구의 최종 방향이다. ▲ 신호정보 특화연구센터 구성. 총 4개의 연구실, 17개의 세부 연구과제로 이뤄져 있다. 지난 2015년부터 2017년까지 1단계 연구를 성공적으로 수행한 뒤, 국방기술품질원의 평가를 받고 2018년 2단계 연구에 착수했다. 오는 2020년까지 방위사업청에서 총 6년간 125억원의 연구비를 지원받는다. 특히 한양대학교 신호정보 특화연구센터는 수요부대가 존재한다. “특화연구센터는 방위사업청에서 매년 센터를 공모하여 엄격한 평가를 통해 지정하는데, 신호정보 특화연구센터는 수요부대가 존재하는 최초의 특화연구센터로 커다란 자부심과 함께 사명감을 느끼고 있습니다.” 윤 교수는 “우리는 세계 최고수준의 신호정보 기술을 보유한 주변국들로 둘러싸여 있다”며 “지속적인 평화 유지를 위해 잠재적 위협을 탐지하며 주변국들과 어깨를 나란히 할 수 있는 전략적 차원의 신호정보 기술 연구는 반드시 필요하다”고 설명했다. “국가 존립을 위한 우리나라 신호정보 원천기술 개발, 한양대학교 신호정보 특화연구센터가 책임지겠습니다.” ▲ 학생과 함께 수집된 정보를 분석하는 윤동원 교수의 모습. 글/ 김민지 기자 melon852@hanyang.ac.kr 사진/ 이진명 기자 rha925@hanyang.ac.kr

2018-09 17 중요기사

[학술][연구성과] 류호경 교수(아트테크놀로지학과)

지난 2006년 1탄으로 시작해 2015년 3탄까지 개봉한 판타지 영화 <박물관이 살아있다>는 실감나는 CG(컴퓨터그래픽)로 대중의 이목을 사로잡았다. 수 세기를 잠들어 있던 역사가 눈 앞에서 움직였다. 뉴욕 자연사박물관(Museum of Natural History)에 전시된 티라노사우루스 박제가 사람을 위협하고, 미니어처 모형들이 살아서 뛰어다닌다. 영화 속 박물관의 시끄럽고 생기 넘치는 모습은 우리가 경험한 박물관들과 사뭇 다르다. 등장인물들은 탐색자가 돼 공간을 누빈다. 만약 이런 박물관이 현실에 존재한다면? 다감각적 전시물을 실제 구현하고자 류호경 교수(아트테크놀로지학과)와 연구팀이 나섰다. 보는 것에서 존재하는 것으로 현재까지 우리나라 미술관, 박물관들은 전시품들을 보여주는 데 그친다. 정적인 분위기의 전시장 안 관람객들은 수동적으로 작품을 관람한다. 정해진 동선과 가이드에 따라 움직인다. “관람객이 전시장 안에 머무는 시간은 보통 15분에서 30분 이내에요. 처음에는 호기심을 갖고 관람을 시작하지만, 30분이 지나는 시점에서부터 지루함을 느낍니다.” 시각적인 체험에 제한된 전시에는 능동적으로 참여할 수 있는 것들이 없기 때문이다. 이미 세계적으로는 박물관과 미술관에서 감각 자극을 이용한 전시가 확대되는 추세다. 영국의 테이트 브리튼 미술관의 테이트 센소리움(Tate Sensorium)전시의 경우, 기존 전시물에 소리, 향기, 맛 등 오감자극을 더해 관람객들에게 새로운 경험을 제공하고 있다. 프랑스 보르도 와인 박물관 역시 모든 오감경험을 제공하여 와인에 대한 관심과 몰입도를 높이고 있다. 인간의 자연스러운 의사소통 방법과 감각을 더할수록 관람객의 만족도가 높아졌다. ▲ 류호경 교수(아트테크놀로지학과)는 듣고, 만지고, 움직임을 느낄 수 있는 콘텐츠를 개발하여 ‘다감각 통합 전시물’을 만드는 것을 목표로 하고 있다. 다감각 전시의 토대 개발 류호경 교수는 이처럼 직접 느낄 수 있는 다감각 전시물 개발을 고려했다. 한국연구재단의 심사를 거쳐 통과 받아 본격적인 연구에 들어갔다. 심사 주제는 ‘박물관 관련 전시 기술 개발’로 한양대학교 아트테크놀로지학과 연구팀을 포함해 총 11팀이 선정됐다. “들을 수 있고, 직접 만질 수 있고, 움직임도 느낄 수 있는 콘텐츠를 설계해 국립 전시에 기여할 예정입니다.” 과학 전시물 연구는 국립과천과학관의 제의를 받아 시작했고, 곧 실제 현업에 적용될 예정이다. 전문 큐레이터 및 학예 연구사들을 미리 선별했다. 연구는 현재 2개월에 접어들었고, 총 3년 6개월이 소요될 예정이다. ‘다감각 전시 기술’은 크게 3가지 기술이 요구된다. ‘보는 기술'과 ‘듣는 기술', '만지는 기술'이다. '보는 기술'은 AI(인공지능, Artificial Intelligence)를 활용해 전시물에 색다른 시각적 효과를 준다. 공룡 모형 앞에 반투명 디스플레이(Semi-transparent display)를 놓고, 3D 영상을 계속 움직인다. '듣는 기술'은 지향성 스피커를 사용해 관람객들이 제한된 장소에서만 소리를 들을 수 있게 한다. 사람들이 서 있는 곳에 준비된 바이브레이션 매트(Vibration mat)를 청각 기술과 동기화(Sound-induced vibration) 해 더욱 생생한 체험형 관람이 된다. 공룡 전시의 경우 이러한 다감각 정보를 통해 공룡이 눈 앞에 존재하는 듯한 환상을 줄 수 있다. ▲ 과학전시물의 다감각 자극 제공과 관람객 호응 간 상관 관계 규명 및 인지-행동-학습에 효과적인 전시 가이드 라인을 개발 한다. (류호경 교수 제공) 더 섬세한 적용을 위해 류 교수는 심리학적 이론까지 도입했다. 관람객의 주관적, 행동적, 신경생리학적 반응 데이터를 수집하고 분석했다. “인지심리학을 바탕으로 관람객의 모든 행동을 분석해 정보로 처리합니다. 사소한 행동도 정교하게 통합해 심리학적으로 모사하죠. 수집된 데이터를 바탕으로 전시장에서 다감각 정보를 어느 정도의 범위로 구현하고 관람객에게 전달할지 정하게 됩니다.” 심리학적 요소, 디자인적 요소, 공학적인 설계 이 3가지가 메인 도입 기술이다. 국립과천과학관은 이 기술을 오는 2019년 9월에 실제 적용하기로 결정했다. 향후에는 이 기술을 국내의 많은 박물관과 미술관 전시에 적용시키는 것이 최종 목표다. 류 교수는 “학생들이 대부분 박물관을 통해 과학과 역사에 흥미를 갖게 되는데, 이 연구를 통해 학생을 포함해 많은 사람이 전시장과 더 가까워졌으면 좋겠다”며 “현재 진행하는 다감각 전시 연구에 뜻이 있다면 자유롭게 지원해 함께 해도 좋겠다”고 덧붙였다. ▲ 퓨전테크놀로지센터(FTC) 3층 로비에서 연구팀이 포즈를 취하고 있다. (왼쪽에서 두 번째) 류호경 교수(아트테크놀로지학과)와 왼쪽부터 정동훈 씨, 진상민 씨, 이승정 씨(이상 아트테크놀로지학과 석사과정) 글/ 김민지 기자 melon852@hanyang.ac.kr 사진/ 강초현 기자 guschrkd@hanyang.ac.kr

2018-08 07 중요기사

[학술][우수R&D] 성태현 교수(전기생체공학부)

정부의 탈원전 정책으로 신재생 에너지 개발의 필요성이 커지고 있다. 인류가 직면한 미래 에너지 문제를 해결할 방법으로 에너지 하베스팅(Energy harvesting)이 주목받고 있다. ‘에너지 하베스팅’은 말 그대로 에너지를 수확하는 기술이다. 주변에서 버려지는 열이나 빛, 압력 등 다양한 에너지를 수집해 전기 에너지로 변환할 수 있다. 한양대 성태현 교수(전기생체공학부)가 소모되는 에너지 양이 많은 산업현장에 이를 적용하기로 했다. 에너지 하베스팅, 한양에 씨앗을 심다 사라지는 에너지를 재사용 할 수 있다면? 영국 케임브리지 대학 연구 결과에 따르면 발전소에 만들어진 전기에너지 중 12%만이 유용하게 사용된다. 버려지는 에너지를 수확할 수 있다면 기존의 발전시설로도 몇 배의 전기에너지를 만들 수 있다. 우리들의 일상에도 편리함을 줄 것이다. 휴대전화에서 발생하는 전파의 3%만 온전히 사용되고, 97%는 공중에 버려진다. 버려지는 전파만 따로 모아 활용할 수 있다면 따로 충전할 필요가 없다고 한다. ▲ 성태현 교수(전기생체공학부)는 에너지 하베스팅 기술을 통해 산업현장에서 버려지고 있는 에너지들을 전기에너지로 변환하여 센서들의 독립된 전원으로 사용하고자 했다. 지난 15년 7월 설립된 한양대 에너지하베스팅센터 '시드 센터(이하 SEED Center)' (지난 기사 보기- 더 풍요로운 세상을 위한 씨앗)는 분산된 에너지 하베스팅 기술을 집약해 세계적 연구 거점센터로 자리 잡기 위해 노력 중이다. ‘SEED Center’는 ‘Save Earth by Energy-harvesting Dream Center’의 줄임말이다. 에너지 하베스팅 기술을 통해 많은 에너지를 생산하는 ‘풍요로운 세상’, 소외된 계층도 기술에 쉽게 다가갈 수 있는 ‘따뜻한 세상’, 친환경 에너지를 통한 ‘깨끗한 세상’을 꿈꾼다. SEED Center, 산업현장에서 발아 중 성 교수를 중심으로 뭉친 SEED Center는 산업현장에서 버려지고 있는 진동에너지와 형광등의 빛 에너지를 전기에너지로 변환해 센서들의 독립된 전류 원천으로 사용하는 기술을 개발 중이다. 산업현장에는 다양한 사물인터넷 센서(이하 IoT 센서)들이 있다. 대부분 유선으로 전력을 공급받고 있어 설치 장소가 제한적이다. 건전지 사용 문제도 있다. 잦은 교체로 인해 번거로울 뿐 아니라 시기가 정확하지 않아 불편하다. 무엇보다 폐건전지는 환경오염을 야기한다. 센서의 독립전원 원천으로 사용되는 에너지 하베스터가 만들어진다면 다양한 장소에 IoT 센서를 활용한 제품이 들어설 수 있다. 긴 수명으로 건전지 교체를 고민하지 않아도 되며 환경도 보호할 수 있다. 경제적 이점도 크다. 성 교수는 “산업현장에서 사용되고 있는 IoT 센서의 경우 센서 비용보다 센서에 전원을 연결하는 시설 공사가 전 비용의 60~80%까지 차지하고 있다”며 “생산단가를 크게 절감할 수 있을 것으로 기대한다”고 말했다. ▲ 기존 산업환경보다 진동이 현저히 저감된 저진동/무진동 환경을 요구하는 스마트 팩토리의 모습. 시드 센터(SEED Center)는 장비 진동이 아닌 유도된 자기장에 의한 진동을 활용하는 방법을 찾았다. (성태현 교수 제공) 최근 산업현장의 변화로 연구 진행에 곤란을 겪기도 했다. 정밀한 작업을 위해 공장이 점점 장비의 진동을 극단적으로 감소하고 있기 때문이다. 진동이 줄면 압전 하베스터를 적용하기 어려워진다. SEED Center는 현장을 깊게 이해하는 방식으로 문제를 해결했다. 근로자들과의 대화를 통한 공감으로부터 시작했다. 성 교수는 “결국 기계적 진동이 아닌 교류의 전기를 사용함으로써 발생하는 자기장의 변화에 따른 진동을 유도했다”고 말했다. 달콤한 열매를 기다리며 SEED Center의 에너지 하베스팅 기술은 세계 최고 수준이다. 특히 진동에너지를 전기에너지로 변환하는데 효과적인 압전에너지 하베스트 기술이 탁월하다. 성 교수는 “한양대는 기존 세계 최곳값인 0.58 mW/cm2(상하이 교통대)의 16배에 해당하는 9.38 mW/cm2 의 기록을 보유하고 있으며, 본 연구를 통해 12 mW/cm2를 달성하려고 한다”고 포부를 밝혔다. 한양대가 에너지 하베스팅 기술분야에서 선도적 역할을 수행할 것으로 기대된다. ▲ 현재 성태현 교수의 시드 센터(SEED Center) 에너지 하베스팅 기술은 세계 최고의 수준이다. 성 교수는 본 연구를 통해 한양대학교가 4차 산업혁명에서 선도적인 역할을 수행할 것이라 자부했다. 아직 에너지 하베스터로부터 오는 전력량이 많지 않다. 그러나 에디슨이 전구를 처음 발명했을 때 그 밝기가 너무 낮아 전구가 켜 있는지 꺼져 있는지 구별하기 어려웠다고 한다. 라이트 형제 또한 처음 비행에 성공했을 때 겨우 12초 동안 36.5 m를 날 수 있었다. 성 교수는 “장기적으로 대용량 발전에 대한 계획이 있다"며 "효율을 더욱 높이고 흩어져 있는 에너지들을 모으는 기술개발이 지속된다면 머지 않아 새로운 에너지 시대를 열어갈 수 있을 것이라고 확신한다”고 했다. 글/ 유승현 기자 dbtmdgus9543@hanyang.ac.kr 사진/ 최민주 기자 lovelymin32@hanyang.ac.kr