News register
Search section
Search area
News Type
News type
Search date
Search word OR
List of related articles
Contents of related articles
No info was found
List of related articles
Contents of related articles
No info was found
View details
Information

01/08/2020 HYU News > Academics

Title

Professor Shin Heung-soo’s Team Has Developed a New Stem Cell Delivery Method Inspired from Lotus

The team has created a biomaterial twice as efficient as previous methods

글로벌뉴스팀

Copy URL / Share SNS

http://www.hanyang.ac.kr/surl/UtOFB

Contents
Professor Shin Heung-soo
Hanyang University announced on the 7th that a team led by Shin Heung-soo, a professor at the Department of Bio Engineering, recently developed a stem cell delivery technology that can more efficiently treat a wide range of wounds caused by burns as such. 

Professor Shin developed a method that can produce large quantities of ‘stem cell three-dimensional spheroid’, known to be efficient in treating wounds and deliver them evenly to a wide range of areas. The technology is expected to be widely used to treat patients with extensive area wounds such as burns and ulcers when it can be commercialized in the future.

Stem cells are being researched to treat various incurable diseases by injecting it into the human body since they possess functions such as self-replication, differentiation possibility into various cells, growth factors, and immunosuppression factor secretion. However, stem cells had the disadvantage of significant decrease in cell function since the environment around the cell differs from the environment in the body when incubating in vitro system and the limitation that local transmission in the human body is possible in the form of an injection, but it cannot regenerate the tissue in a wide area of damage.

Professor Shin’s team derived ideas from lotus and solved these problems. He created a biomaterial that small rooms in hundreds of micrometer-scale, formed on a large scale regularly on the surface, to replicate the structure that each seed is fixed inside lotus seedpod. He formed three-dimensional spheroids by making stem cells extracted from human fat tissues to be brought together. Dealing with the process that the fixed seeds inside lotus become released outside due to external forces, he designed the stem cell spheroids formed in each room to be released externally when biological material expands.

As a result of animal model testing, the three-dimensional spheroids produced through this process could be transplanted into a wide-range skin wound easily and showed a cure effect that is improved twofold. Professor Shin said, “This research can increase the survival rate of cells transplanted in the human body by refining the delivery method of stem cell treatment that a lot of people are interested in. It is a meaningful original technology to increase the efficiency of cell treatment with a small number of cells.” 

This work was researched together with Professor Choi Yu-seok of the University of Western Australia and Professor Moon Seong-hwan of Konkuk University College of Medicine, and the result of the research is listed on the December volume of ‘Biomaterials’, the magazine of authority in the biomaterials field. The research was funded by the Mid-sized Research Support Project and Natural Simulation Innovation Technology Development Project of National Research Foundation, Ministry of Science and ICT.

 
▲ A biomaterial for the stem cell spheroid delivery and production, based on the lotus-simulated biomaterial. (Left) A mimetic diagram of hydrogel that has a lot of rooms alike lotus, produced with micro-process technology (Middle) A mimetic diagram of stem cell spheroid that has a three-dimensional structure formed in each room through stem cell (Right) A process that spheroid is being delivered through external stimulation for transplantation 


Global News Team
Translated by: Lee Seong-chae
global@hanyang.ac.kr
Copy URL / Share SNS

0 Comments