News register
Search section
Search area
News Type
News type
Search date
Search word OR
List of related articles
Contents of related articles
No info was found
List of related articles
Contents of related articles
No info was found
View details
Information

08/06/2019 HYU News > Academics > 이달의연구자

Title

[Researcher of the Month] Development of Organic Semiconductor Gel for High-Resolution Organic Electronics

Professor Kim Do Hwan (Department of Chemical Engineering)

김현수

Copy URL / Share SNS

http://www.hanyang.ac.kr/surl/66i7

Contents
Organic semiconductor gel was first developed by Professor Kim Do Hwan (Department of Chemical Engineering) and his research team that opened doors to the dramatic performance enhancement of virtual reality (VR) and augmented reality (AR) devices. His paper “Universal Route to Impart Orthogonality to Polymer Semiconductors for Sub-Micrometer Tandem Electronics” was published in the world-famous journal Advanced Materials as the cover acticle in July.
 
Professor Kim Do Hwan (Department of Chemical Engineering) explained in detail the organic semiconductor gel, the keyword from his research. 
Among existing semiconductors, silicon semiconductors are used representatively in many facets of the semiconductor and display industries. However, silicon is too brittle and requires expensive processing such as vacuum deposition. In 1977, Alan J. Heeger, Alan G. MacDiarmid, and Hideki Shirakawa found the first organic semiconductor made of carbon and hydrogen, uncovering the first organic matter that electricity flows through. In this sense, organic semiconductors were in the spotlight as the next generation of semiconductors, but they still could not substitute silicon semiconductors which allowed electricity to pass through at high speeds.
 
That was, until about five years ago when high-performance organic semiconductors were created, enabling the speed of electricity transfer to become comparable to that of silicon semiconductors. However, another problem emerged as existing organic semiconductors could not adopt successive solutions and photolithography processes simultaneously, because organic semiconductors may dissolve or become damaged during patterning processes. Here, photolithography refers to the semiconductor patterning technology which uses UV light as in the process of silicon semiconductors. Kim and his research team investigated how organic semiconductors could keep the established solution processing, while maintaining the optoelectronic performance, as well as adopt the patterning process of silicon called photolithography.
 
Ultra-High Definition (UHD) OLED microdisplay with a hyper-resistant organic semiconductor gel basis to realize AR or VR.
(Photo courtesy ot Kim)


They created organic semiconductor gel to apply a new conversion methodology that can be applicable to conventional photolithography processing as well as sequential solution processes while keeping the performance level of existing organic semiconductors. “Gel” refers to semi-Interpenetrating Diphasic Polymer Network (semi-IDPN), which is a three-dimensional, high-density, entangled structure between organic semiconductor and organosilica chains. Organosilica is a silica network that includes organic chains. Through the newly created organic semiconductor gel, the research team found that organic semiconductors can be made from sequential solution processing and patterned into desired sizes via photolithography.
 

Kim (second from the left) and his research students who participated in this study.

The results of this research are expected to widen the application of new technology into various organic optoelectronic devices such as organic image sensors and neuromorphic electrodes, as successive solution processing and photolithography processing are now applicable. “The performance of VR and AR devices that used to arouse giddiness and motion sickness due to low resolution is expected to advance drastically with the application of organic semiconductor gel,” said Kim. The virtual reality that we thought only possible in movies has now become closer than ever to real life, with ultrahigh-definition (UHD) OLED microdisplays and high-performance VR and AR devices coming alive with the development of organic semiconductor gel.



Kim Hyun-soo        soosoupkimmy@hanyang.ac.kr
Photos by Kim Ju-eun

 
Copy URL / Share SNS

0 Comments