News register
Search section
Search area
News Type
News type
Search date
Search word OR
List of related articles
Contents of related articles
No info was found
List of related articles
Contents of related articles
No info was found
View details
Information

02/25/2020 HYU News > Academics > 이달의연구자

Title

[Researcher of the Month] Establishing the Basis for Drug Development

Professor Chae Pil Seok (Department of Bionano Engineering, ERICA Campus)

오규진

Copy URL / Share SNS

http://www.hanyang.ac.kr/surl/GYRIB

Contents
Membrane proteins are proteins that function as the gatekeepers of cells, controlling all interactions between cells. Due to its crucial role in cell activity, the protein is often recognized as the factor in many diseases. However, there have been limitations in figuring out the structure of protein due to its vulnerability in modification, without effective amphiphiles that stabilize the protein. Professor Chae Pil Seok (Department of Bionano Engineering, ERICA Campus) recently made progress in facilitating the research on membrane protein by producing a new type of amphiphiles—the TEMs.
 
Professor Chae Pil Seok (Department of Bionano Engineering, ERICA Campus) developed a new type of amphiphiles.

Amphiphiles—more commonly, detergents—are necessary tools to isolate membrane proteins from biological membranes for studies. “Amphiphiles with hydrophobic properties were found to have advantages in the stabilization of otherwise vulnerable membrane proteins,” said Chae. For a few decades, a molecule named DDM (dodecylmaltoside) was primarily used in the research as the amphiphiles. Unfortunately, the molecule could not provide the required stability for a large number of protein. Thus, many scholars devoted themselves to inventing the new amphiphilic molecules that could replace DDM.
 
Many scholars, including Chae, are working on to develop new amphiphilic molecules that could replace the conventional amphiphiles.

Chae registered success in such a trend, developing 1,3,5-Triazine-Cored Maltoside Amphiphiles, also known as TEMs. Chae’s team, a joint research team from Stanford University, Texas Tech University, Imperial College London, Copenhagen University, and Tsinghua University, introduced variations in the alkyl chain linkage and an amine-functionalized diol linker by designing and synthesizing 1,3,5-triazine-cored dimaltoside amphiphiles derived from cyanuric chloride. “TEMs have significant potential in membrane protein study for their structural diversity and universal stabilization efficacy for several membrane proteins,” said Chae. The professor expects TEMs to play a crucial role in the development of new pharmaceuticals for terminal illnesses.
 
Chae's team will continue their research on membrane protein and amphiphiles.

Chae seeks to continue his research on developing a better amphiphile. “I would like to implement a system that can maximize the stability of membrane protein in aqueous solution,” he said. Moreover, Chae is digging deeper into the process of membrane protein modification, especially focusing on post-translational modifications in his current research on native mass spectrometry with Professor Ying Ge of the University of Wisconsin. Chae is building the groundwork for treating incurable diseases through continuous research on figuring out the structure of membrane protein.



Oh Kyu-jin        alex684@hanyang.ac.kr
Copy URL / Share SNS

0 Comments