Total 5Articles
News list
Content Forum List
2020-07 27 Important News

[Academics][Researcher of the Month] Customizing Breast Cancer Treatment through Big Data

In 2015, Professor Kong Gu (College of Medicine) was a pioneer in the field of breast cancer research and treatment, laying the foundation for web-based precision by mapping 560 breast cancer whole-genome sequences. Kong is now developing a screening system for breast cancer with multiomics and big data, paving the way for customization and personalized breast cancer treatment. Professor Kong Gu (College of Medicine) developed a target gene screening system for the diagnosis and treatment of breast cancer. Breast cancer is one of the most common types of cancer among women, causing death to 1 out of 38 women. The cancer is classified into three subtypes, which are Estrogen Receptor (ER) positive, HER2 positive, and triple-negative. The latter two – which make up fewer than 30 percent of all cases – usually have bad prognoses. Through this research project, Kong sought to find the target gene of malignant tumors through multiomics. Multiomics is a new approach where the data sets of different omic groups, such as the genome, proteome, and transcriptome, are combined during analysis. By unpacking 41 data sets from METABRIC, TCGA, and GEO, Kong made a target gene screening system that allows researchers to customize the treatment of potential patients. “It is a platform to provide the individualized surgical target with data visualization,” explained the professor. Data visualization, survival analysis, and target gene screening are three main points in this research. (Photo courtesy of Kong) Kong, who is one of the first Korean scholars to introduce the polymerase chain reaction (PCR) test, said it was a challenge for him to conduct this research. “Most of what I have studied as a researcher was on biotechnology(BT),” said Kong. The latest research, however, involved informational technology (IT). He said a lot of help was given to him from Kim Hyung Yong, a Ph.D. candidate who majored in bioinformatics for his master’s degree. Kong tried to learn IT himself, as well as to pass his knowledge of breast cancer on to his doctoral student. “It was an opportunity to remind me that the path of learning is long and winding," recalled Kong. Kong said it was definitely a challenge to encounter informational technology (IT) in his research. Kong advised the members of Hanyang to be engrossed in their path. “Stay focused on your interests with constant effort,” advised the professor. “You will eventually become an expert in the field.” Oh Kyu-jin alex684@hanyang.ac.kr

2020-07 20 Important News

[Academics][Excellent R&D] Building a System for Urban Ecosystems

When engineers did urban planning in the past, the feasibility and economic efficacy that it would bring were the top priorities. Recently, however, there has been increasing attention given to environmental factors, and the research on urban ecosystems has gained popularity within the field of urban planning. Professor Oh Kyushik (Department of Urban Planning and Engineering) is building up a spatial decision support system to maintain and manage urban ecosystem services. Professor Oh Kyushik (Department of Urban Planning and Engineering) is creating a platform for the maintenance and management of urban ecosystem services. Oh’s project aims to make a platform that assists with the decision-making process of the government. “What I am trying to do is to connect developmental and environmental issues in one framework,” explained Oh. The professor presented four standards in providing ecosystem services: resilience, buffer power, carbon storage capability, and heat stress mitigation capability. Considering these four standards, Oh collected research data provided by the collaborating labs and incorporated them in a readily accessible platform with an easy-to-use interface. Oh collected research data provided by collaborating labs and incorporated them into a readily accessible platform with an easy-to-use interface. Previously, Oh has been in charge of two national-level research and development projects conducted by the Ministry of Land, Infrastructure, and Transport. However, this was his first time participating in a project conducted by the Ministry of Environment. "The two ministries have some common ground but see from different points of view,” said Oh. He said he was determined to learn and combine both standards through this project. Oh revealed his will to make his research beneficial by reflecting the views of both the Ministry of Land, Infrastructure, and Transport and the Ministry of Environment. Oh reminded the members of Hanyang to look with eyes wide open at the past, but more importantly at the future. “I feel the world is changing at a rapid pace, especially after the coronavirus outbreak,” said Oh. The professor said that the field of urban planning is changing in parallel, as it is a discipline that is deeply related to the daily life of the public. Oh advised students to keep a broad vision and to build up extensive knowledge for the future. Oh Kyu-jin alex684@hanyang.ac.kr

2020-06 01

[Academics][Researcher of the Month] Effective Use of Photocatalysts to Combat Environmental Problems

Numerous attempts have been made by engineers to apply technology to our everyday problems. Professor Park Jae-woo (Department of Civil and Environmental Engineering) tackles one of the most critical problems of our time, environmental pollution, using the special characteristics of nano photocatalysts. His research focuses on resolving the problems caused during the reduction-oxidation process of photocatalysts. Through his research, he has discovered that the use of the Charge Transfer Layer (CTL) is significantly effective, and expects the findings to help organic pollutants decompose through photocatalysts, which will lead to a cleaner society. For the past 15 years, Park has been conducting research on the development of magnetic-cored dendrimers and nano-photocatalysts for the purpose of environmental purification. According to Park, nano-photocatalysts have the power to commence oxidation in hazardous substances by separating electrons from holes. This process of oxidation converts substances into water and carbon dioxide gas, which are harmless to the environment. However, despite their striking capabilities, photocatalysts have their shortcomings. In his research, Park focused on compromising with the photocatalysts' technical problem. For the past 15 years, Professor Park Jae-woo (Department of Civil and Environmental Engineering) has been conducting research on the development of nano-photocatalysts for the purpose of environmental purification. The problem with the use of photocatalysts One of the biggest disadvantages of using the reduction-oxidation of photocatalysts is that electrons have the tendency to return to their respective electron holes. Their tendency to recombine after separation lowered the rate at which photocatalysts oxidized harmful substances, and many researchers have sought out ways to prevent the recombination of electrons with the electron holes. The existing methods such as doping, facet, and core-shell merely slow down the rate at which electrons recombine with electron holes and fail to completely separate them. However, Park has succeeded in permanently separating the electrons using the CTL. How was CTL used? A photocatalyst which utilizes the CTL is comprised of three components: the photocatalyst which forms a pair of electrons and electron holes, the CTL which moves the electrons selectively, and the collector which accumulates and stores the moved electrons. Here, the CTL, being the main component, carries the electrons while inhibiting their passage through electron holes. As a result, the electron is moved from the photocatalyst to the electron collector, and suppresses them from recombining. What makes Park and his team’s accomplishment so unique is the fact that their work did not stop at only delaying the recombination, as previous methods had done, but also entirely prevented recombination by separating the electrons and shutting down the reverse-travelling by maintaining a high level of catalyst reaction. The result of the research “We have conducted two experiments to prove there is an increased activation of catalysts by using the CTL in the mentioned study,” said Park. He continued, “The first, is hydrolysis. A catalyst under the influence of the CTL displayed 78% higher hydrogenative yield than the existing one in the visible ray photography. Then, in the experiment with the subject bisphenol A, which is an organic pollutant, the catalyst showed a very high 93% removal rate after three hours of reaction." Park also believes that catalysts utilizing the CTL can be applied to energy and environment-related fields in an extensive range. Park said, “I want to thank my graduate school students, whose effort and sweat have made all this possible.” Park expressed gratitude to his graduate school students, whose effort and hard work have made the project possible. “It motivates me to reflect on my mindset when I see students working so hard on the research topic.” He especially thanked Hassan Anwer (Civil and Environmental Engineering, Doctoral program) for his devotion to the research. Lee Yoon-seo cipcd0909@hanyang.ac.kr

2020-05 04 Important News

[Academics][Researcher of the Month] From Seawater to Fresh Water

Droughts and water shortages are serious global threats. However, many technical developments are in progress to resolve these problems, and one of them is desalination. Desalination is the process of separating the salt in seawater from the water in order to get usable fresh water. However, the currently available technologies have the problem of sustainability, for they require fossil fuel and costly factories to be constructed. To suggest an alternative, Professor Kwak Rho-kyun (Department of Mechanical Engineering) is researching electro-membrane desalination. Professor Kwak Rho-kyun (Department of Mechanical Engineering) has been working on the topic of electro-membrane desalination for 10 years. Electro-membrane desalination uses the division of positive ion and negative ion when salt dissolves in water. The positive and negative ions are drawn to each pole when voltage is applied. Intersecting the membrane that makes each ion between electrodes pass through, called the exchange membrane of positive and negative ions, salt ions can be collected and removed. What is left is fresh water with the saline ions removed. Kwak has been working on the topic for 10 years, since he was a doctoral student. He said he first began his research inspired by the idea from his Ph.D. advisor that the unusual migration phenomenon of biomaterials such as DNA and ions would also occur in the electric membrane desalination system. His first goal was building a system of electro-membrane desalination to check whether the migration of biomaterials such as DNA and ions appear in the system of electro-membrane desalination, and visualizing the migration of the ions inside. Based on the visualization research, Kwak studied various subjects such as improving the efficiency of existing desalination devices and of treating the produced water. Kwak expressed special gratitude toward his graduate students who have helped him throughout the research process. Kwak said the significance of the study lies in that it developed a promising futuristic desalination technology, enabling Korea to become a global powerhouse to solve the future water shortage problem. Kwak’s innovative research has been highly acknowledged, introduced in journals like PRL and JOFM and others on the topics of desalination and water research. Kwak also expressed gratitude toward his graduate school students who have helped him throughout the research process. “I really want to thank my students. Their hard work was what made it possible to achieve such good research results,” said Kwak. Hwang Hee-won whitewon99@hanyang.ac.kr

2017-01 02

[Academics][Researcher of the Month] Scientific Integration Approach to Programmable Nuclease (1)

When a baby is identified to have been born with a rare, incurable disease, it would bring about concerns and sorrow to the newborn and the parents. However, with the prospective research on CRISPR Cas-9 system, or a programmable nuclease, a host of diseases will prevented without further ado. Professor Bae Sang-su of the Department of Chemistry explains the mechanism of the CRISPR Cas-9 system through his research “Structural roles of guide RNAs in the nuclease activity of Cas-9 endonuclease”. Also, he reveals the course of his life towards scientific integration that shapes the bright future of scientific studies. Structural properties and significance of CRISPR Cas-9 The significance of this research paper is that it explains the structural mechanisms of the CRISPR Cas-9 system and how it can modify or edit DNAs in cells. CRISPR-Cas 9 stands for Clustered Regularly Interspaced Short Palindromic Repeats, which relies on a protein named Cas-9. As it is called by the name of 'molecule scissors', it introduces the new spectrum of genome editing technology. Even though there already have been two programmable nuclease systems which are the Zinc Finger Nuclease and the TALENs(Transcriptor Activator Like Effector Nuclease System). The former is the first generation of the genome editing system that is compiled of one zinc finger and three to four nucleases. The title originated from the chemical component zinc, because this DNA contained certain amount of zinc. Then the second generation of genome editing system developed, which was called the TALENs that contained the base named xanthomonas originating from vegetable pathogens. “These two generations were startling contributions to scientific development, but with the advent of the third generation of genome editing, the CRISPR Cas-9 system, the scientific world could not contain its surprise,” said Bae. The CRISPR Cas-9 system was simpler in application to various circumstances and in the modification of DNAs. The significance of the CRISPR Cas-9 system is that it can enhance the welfare of human life in various aspects. “This technology is currently being applied to plants and animals, and also is in process of availing itself to humans by amending laws. Application of the system to humans will take 10 years at the most, since the research is developing at a fast pace,” explained Bae. An example of genome-modified plant through the CRISPR Cas-9 system that Bae provided was a modified mushroom in the United States. Discoloration of mushrooms by time lapse was prevented due to the CRISPR Cas-9 system, and the mushroom could maintain its original color for a long time. Bae explained that “not only does the CRISPR Cas-9 system treat incurable diseases of humans, but it can also modify DNAs in plants and animals to increase marketability.” Bae is explaining the significance of the CRISPR Cas-9 system. However, the genome editing system has been controversial in the scientific academia due to its resemblance to genetically modified organisms, also called GMO. According to Bae, there is a blunt difference between the two because GMO requires DNAs extracted from other organisms to modify the sample, while the CRISPR Cas-9 system modifies DNAs in the sample itself. “Even though some experts call the CRISPR Cas-9 system a part of GMO, the American Food and Drug Administration has acknowledged the genome editing program as a discrete system,” said Bae. Another controversy that the CRISPR Cas-9 system is incurring is the occurrence risk of a tailored baby. Even though there is a low possibility in creation of so called 'monsters', the prospect of the system is inexhaustible that the scientific academia can’t forecast the future application of the CRISPR Cas-9 system. “The application of the system should be discreetly considered and contemplated, in order to prevent any accounts of abuse incurred by a little crack of regulations,” said Bae. Scientific integration approach and its synergy effects One of the reasons why Bae could successfully reveal the mechanism of this newly found technology was due to his academic background. Bae got his bachelor’s, master’s, and doctoral degrees in physics, while pursuing chemical studies in his post-doctoral program. Once he became a professor in the chemistry department, he encountered the Method of the Year- 2013 published by Nature Method, which was introducing the new technology, the CRISPR Cas-9 system. As Bae was carried away by the astonishment, he got involved in the genome engineering research in earnest. “Although there could be some drawbacks for me to research biological technology because I majored in physics and chemistry, I thought that I can sublimate these flaws into advantages through scientific integration,” said Bae. Because he majored in physics, he could access the research in a physician’s perspective of ‘how and why’, instead of a biologist’s perspective of ‘so.’ According to Bae, he demonstrated his full potential and capabilities in this research as both physician and chemist, because he could inquire the structural mechanisms of the system and create programs using various physical means like razors. In his teenage years, Bae was interested in studying science since he was a student of natural sciences and engineering. Moment by moment, Bae immersed himself in scientific research, and in his graduate school years, he spent great energy and time researching for scientific development. Due to his diverse academic background, Bae could successfully pursue his amalgamative research in different scientific fields. Now, another approach to scientific integration is in progress, as the CRISPR Cas-9 system is being applied to different fields. “As a scientist researching the CRISPR Cas-9 system, I have to cooperate with experts from profoundly dissimilar fields. Lack of knowledge between each others’ academic branches and hardship in communication may bring about discord. Thus, efforts to understand and study each others’ academic knowledge through cooperation is the key to successful results,” said Bae. A scientific integration approach has been the key to successful research on the CRISPR Cas-9 system. Bae's ultimate goal is to apply this original research of CRISPR Cas-9 system to different fields through joint research. To the question of how he will encourage and foster junior scholars at Hanyang University, he answered with ‘confidence.’ “I have studied and researched at various universities with different experts, and I have realized that students of Hanyang University are equally capable to these scientists. With confidence and courage to carry on their majors with tenacity, students of Hanyang University can demonstrate their capabilities to the fullest,” said Bae. Kim Ju-hyun kimster9421@hanyang.ac.kr Photos by Kim Youn-soo