전체 126건
뉴스 리스트
게시판 리스트 컨텐츠
2019-04 14

[학술][우수R&D] 박완준 교수, BK21 PLUS 사업에 선정 

정부의 까다로운 선발 과정을 거쳐 박완준 융합전자공학부 교수가 이끄는 ‘융합IT 기반 미래가치 창조 인재양성 사업단’이 BK21 PLUS 사업에 선정됐다. 이 사업단의 목표는 최우수 대학원 및 대학원생을 키우는 것이다. 21세기를 맞아 정부가 시작한 BK21 PLUS 사업은 이름대로 Brain Korea를 위한 대학원 내 창조 경제를 실현할 석박사급 창의적 인재를 양성하는 것을 목표로 한다. 올해로 7년째 접어드는 BK21 PLUS 사업은 한양대학교 서울캠퍼스와 ERICA캠퍼스 내 총 25개의 학과에 매년 100억 원이 넘는 사업비를 지원하고, 그와 함께 박완준 융합전자공학부 교수의 사업은 꾸준히 성장하고 있다. BK21 PLUS 사업은 고등 인력을 양성하기 위해 시작했다. 사업의 유형은 크게 세 가지로 나뉜다. 첫 번째 ‘글로벌 인재 양성형’은 첨단융합 분야를 중심으로 대학원 국제협력 강화 등을 통해 글로벌 수준의 인재를 양성한다. 두 번째 ‘특화 전문인재 양성형’은 고급 실무형 전문인력을 양성한다. 마지막은 ‘미래기반 창의 인재 양성형’은 학문 분야별 창의적 미래 핵심인재를 양성한다. 박완준 교수의 ‘융합IT 기반 미래가치 창조 인재양성 사업단’은 미래기반 창의 인재 양성형에 속한다. 교육부는 지난 2013년 과학기술 분야에서 한양대, 서울대, KAIST, POSTECH, 고려대, 경희대, 성균관대, 연세대 등에서 총 9개 사업단을 선정했다. 이 중 박완준 융합전자공학부 교수가 이끄는 사업단은 지난 2015년 중간평가 결과가 최상위권이다. 박 교수는 ‘BK21 PLUS 사업’ 이전에 6년간 진행됐던 ‘BK21 사업’에서 ‘수요 지향적 정보기술 전문인력양성 사업단’은 정보기술 분야 12개 사업단 중 1위로 과제를 마무리했다. ▲ 박완준 융합전자공학부 교수는 "BK21 PLUS 사업 이전 지난 6년간 진행한 ‘수요 지향적 정보기술 전문인력양성 사업단’이 교수 1인당 개발기술 기업 이전 금액, 논문, 정부연구비 수주, 특허, 기업연구비 수주 등 총 다섯가지 부분에서 최상위권을 유지했다"고 말했다. 정부는 사업단의 특성과 전략에 맞게 적정 규모의 예산을 배정한다. 그렇기 때문에 대학원 전반의 우수한 실적이 절대적이다. 융합IT 기반 미래가치 창조 인재양성 사업단은 지난 2016년부터 2년간 경쟁대학과의 성과 점검 점수에서 4위를 차지했다. 2013년부터 2016년까지의 평가에선 ‘교수 1인당 특허등록’과 ‘교수 1인당 기업 연구비’ 항목에서 최상위권을 유지했다. 사업단은 ‘최고의 인재를 길러내는 최고의 교수진’이라는 이름 아래 '17:1'의 학부생 대비 교원 수와 35개 연구실을 운영하며 학생들의 연구에 지원을 아끼지 않았다. 융합IT 기반 미래가치 창조 인재양성 사업단이 중점적으로 연구한 분야는 ‘그린/퓨전 IT 디지털 컨버전스’다. 융합전자공학부는 지향적인 교과 과정 운영을 목표로 이를 교육과정에 포함했다. 박 교수는 “전자, 통신, 컴퓨터 공학 이론과 기술을 바탕으로 융합 분야 수요에 따라 교과 과정을 실용적으로 운영하고 있고, 해외 선진 대학의 교과 과정과 비교 평가해 현장이 요구하는 첨단 기술 트렌드를 접목했다”고 했다. ▲ 융합IT 기반 미래가치 창조 인재양성 사업단에 속한 대학원생들의 연구 및 학회 활동이 그린/퓨전 IT 디지털 컨버전스를 바탕으로 진행되고 있다. (한양대학교 융합전자공학부 제공) 박완준 융합전자공학부 교수의 사업은 내년 6월에 끝난다. 융합IT 기반 미래가치 창조 인재양성 사업단은 BK21 후속 사업에 선정되기 위해 바쁘게 움직이고 있다. 정부 사업은 대학원생의 성공적인 사회적 진출을 목표로 한다. 박 교수는 “우리의 목표는 오직 대학원생의 성장을 위함이며, 인재를 양성하기 위해 앞으로도 지원을 아끼지 않을 것”이라며 포부를 밝혔다. 글/ 정민주 기자 audentia1003@hanyang.ac.kr 사진/ 이현선 기자 qserakr@hanyang.ac.kr

2019-04 01

[학술][이달의 연구자] 성명모 교수(화학과)

우리 주변 전자제품에 사용하는 반도체의 경우 대부분 무기 반도체다. 간혹 유기 반도체를 전자제품에 사용하기도 한다. 그러나 무기 반도체에 비해 전하이동도가 느리기 때문에 거의 사용하지 않는다. 성명모 화학과 교수는 ‘PCDTPT’라는 단결정 고분자 나노 와이어 개발로 기존 유기 반도체 전하이동도를 10배 이상으로 높였다. 유기 반도체에서 무기물만큼의 전도성을 나오게 한 것이다. 보통 사용하는 무기물을 유기 반도체로 대체할 가능성이 높아져, 실질적인 대체 사용 시점에 가까워졌다. 지난 1997년 유기 반도체에도 전도성이 있다는 사실이 밝혀졌다. 이후 유기 반도체로 전자제품을 만드는 혁신적인 시도가 계속됐다. 시도를 거듭하며 스마트 워치, 삼성의 OLED 제품 등 플렉서블 디스플레이(Flexible display)로 불리는 유기 반도체 전자 제품들이 시중에 나오기 시작했다. 유기물질로 이뤄진 제품들이 속속 출현하면서 점차 유기 반도체의 실용화를 입증했다. 하지만 무기 반도체에 비해 상당히 낮은 전하이동도를 가진 유기반도체만을 사용한 제품을 생산할 경우 동작 속도가 매우 느리고 안전성이 입증되지 않아 여러 가지 문제점이 나타나고 있다. 전하이동도는 제품의 동작 속도를 결정짓기 때문에 중요하다. 따라서 보통은 유기 반도체와 무기 반도체를 같이 사용해 제품을 생산한다. ▲ 성명모 화학과 교수는 “유기반도체가 더 활성화되기 위해 전도속도가 높고 안전한 유기반도체를 만들어야 한다”고 말했다. 이렇듯 유기 반도체는 성능과 안정성이 떨어져 사용이 제한돼 있다고 알려져 있다. 성 교수가 10년간 연구 중 개발한 ‘PCDTPT’ 단결정 나노선으로 이 판도를 뒤집었다. ‘PCDTPT’ 단결정 나노선은 단결정 고분자 나노 와이어로, 가볍고 뛰어난 성능과 함께 넓은 면적과 저렴한 비용으로 쉽게 생산할 수 있다. 저렴한 대형 전자제품 분야에서도 응용 가능성이 매우 크다. 또 단결정형 PCDTPT 나노 와이어는 소형 분자 유기 반도체에 비해 대기 조건에서 양호한 환경안정성을 보인다. 성 교수는 유기 반도체의 가장 큰 단점인 전하이동도를 기존의 10배 이상으로 높였다. 개발 전 10정도의 모빌리티(전자를 움직이는 속도)였다면 개발 후 100에 도달하는 모빌리티를 기록했다. 지금까지 이렇게 높은 이동도를 가질 수 없다고 알려졌지만 성 교수가 이를 해결했다. 10배 이상으로 이동도를 증가시킬 수 있었던 이유는 ‘PCDTPT’ 나노선의 독특한 분자 구조에 있다. 일반적인 유기반도체 나노선은 분자판이 나란히 배열돼 있다. 전하는 배열된 방향을 따라 움직인다. 그러나 ‘PCDTPT’ 나노선은 그와 다르게 90도 다른 방향으로 전하가 움직인다. 이 때문에 폭발적으로 고성능을 발현할 수 있었다. ▲ (a) PCDTPT(단결정 나노 와이어)를 만드는 기술 과정. (b) 만들어진 결과의 모습이다. 마지막 사진에 단결정 나노 선 한 줄 씩 보인다. (논문명: Single-Crystal Poly[4-(4,4-dihexadecyl-4H-cyclopenta[1,2-b:5,4b′]dithiophen-2-yl)-alt-[1,2,5]thiadiazolo[3,4‑c]pyridine] Nanowires with Ultrahigh Mobility) ▲단일 결정의 전도 속도 변화를 한 눈에 볼 수 있는 사진 자료. (a)전형적인 나노 와이어의 소자 구조. 전극 사이의 잘 정렬된 단일 나노 와이어를 보여준다. (b)단일 결정 PCDTPT 나노 와이어의 일반적인 배출 전류-배출 전압(ID/VD) 출력 곡선. (c)단일 결정 PCDTPT 나노 와이어의 일반적인 배출 전류-게이트 전압(ID/VG) 전송 곡선(VD = -80 V). (d) 주변 조건에서 단일 결정 PCDTPT 나노와이어의 빨라진 전도 속도를 보여주는 그림. 성명모 교수는 “유기 반도체 중 최고의 이동도가 나온 것”이라고 말하며 “이 기술로 모든 디스플레이를 한층 더 유연한 제품으로 만들 수 있는 가능성을 제시했다”고 덧붙였다. 추가로 유기 반도체에 잉크젯을 넣는 연구도 병행하고 있다. OLED를 고가의 포터 장비대신 잉크젯으로 만들면 훨씬 저렴하고 유연하게 움직이는 디스플레이를 구현할 수 있다. 성 교수는 “이번 연구를 통해 유기 반도체의 무한한 가능성에 한 발 더 접근한 것”이라고 말했다. ▲ 오랜 시간 묵묵히 연구에 매진하고 있는 성명모 교수는 “유연한 소자를 통해 새롭고 인류적인 유용한 것들을 만드는게 목표”라고 말했다. 글/ 김민지 기자 melon852@hanyang.ac.kr 사진/ 이현선 기자 qserakr@hanyang.ac.kr

2019-03 10

[학술][우수R&D] 제무성 교수(원자력공학과)

세계 200여 개 국가 중 30개국에서 원전(원자력발전소)이 가동되고 있다. 미국이 99기, 러시아가 36기를 운전 중이다. 한국에는 몇 기가 있을까? 놀랍게도 미국, 러시아보다 영토가 확연히 작은 한국은 25기를 보유하고 있다. 한국은 세계 원전 밀집도 1위다. 특히 올해로 8주기를 맞은 ‘2011년 후쿠시마 원전 사고’는 원전에 대한 불안감을 더했다. 우려의 목소리가 높은 만큼 원전을 안전하게 운영하는 방안은 무엇보다도 중요하다. 한양대 제무성 원자력공학과 교수는 한국의 원전 안전 드림팀인 ‘다수기 확률론적 안전성평가(PSA) 규제 검증 기술개발 사업단(이하MURRG, Multi-Unit Risk Research Group)’의 총괄을 맡고 있다. 그가 들려주는 안전한 대한민국 이야기에 귀 기울여 보자. ▲ 제무성 원자력공학과 교수가 이끄는 ‘다수기 확률론적 안전성평가(이하 PSA) 규제 검증 기술개발 사업단(이하MURRG, Multi-Unit Risk Research Group)’에서 기존 3단계 PSA 규제 검증 기술에서 ‘부지 리스크 평가(SRA, Site Risk Assessment)’를 추가해 원전의 안전성을 높이는 연구를 진행하고 있다. 부산에 위치한 고리 원전 단지의 경우, 신고리 56호기까지 건설된다면 총 9기가 밀집해 있는 원자력 밀집 단지가 된다. 반경 30 ㎞ 안에 382만 명의 인구와 부산, 울산 등 국가산업 단지가 위치해 있는 곳에 원전이 9기가 있다는 뜻이다. 만약 예측할 수 없는 대규모 외부 재해가 이곳에 일어난다면 동시에 중대 사고가 예상된다. 많은 양의 방사선 물질이 원자로 핵연료 내부에서 축적돼 있기 때문에 바로 냉각시키지 못하면 방사성 유출이 진행된다. 이 때문에 기존 원전 부지에 신규 원전을 추가할 때에는 이로 인한 영향을 측정하기 위한 다수기 확률론적안전성평가(이하 PSA)가 이뤄진다. PSA는 원전에 발생할 수 있는 모든 사고의 종류와 이 사고가 발생할 가능성 및 사고로 인한 영향을 확률론적 방법으로 정량화해 평가하는 기법이다. PSA는 사고의 가능성을 3단계로 나눠 평가한다. 1단계는 원자로 내에서 사고가 날 확률, 2단계는 원자로를 둘러싼 돔 건물이 깨질 확률, 3단계는 원자로 외부로 방사능이 퍼질 경우 주변 주민들이 얼마나 피폭될지에 대한 확률을 계산한다. 원전 사고 예방을 위해 원자력 전문가들은 머리를 모았다. 제 교수가 이끄는 MURRG(Multi-Unit Risk Research Group)에서는 기존 3단계 PSA 규제 검증 기술에서 ‘부지 리스크 평가(Site Risk Assessment, SRA)’을 추가해 4단계로 원전 안전성을 높이는 연구를 진행했다. 한국원자력연구원(KAERI)을 비롯한 8개의 연구기관이 만든 MURRG는 국내 유일의 ‘원자력 안전드림팀’이다. ▲ 제무성 원자력공학과 교수의 연구를 통해 중대사고 사례 분석 데이터 및 원전 현장 자료와 결합해 피해 예상 결과를 예측할 수 있다. 원전 내 부품별 모델링으로 앞으로 다가올 사고를 예방하고 미리 제반 기술을 정비할 수 있다. ▲ 제무성 교수는 " MURRG는 한국 유일한 ‘원자력 안전드림팀’"이라며 "앞으로도 방사능 유출을 막기 위해 원자력 연구를 지속적해서 할 예정"이라고 말했다. 제 교수가 제시한 부지 리스크 평가(SRA, Site Risk Assessment)를 통한다면 한 부지 안에 원전은 몇 개까지 안전한지 계산할 수 있음은 물론, 현장에서 바로 리스크 모니터링도 가능해진다. 기존까지는 총체적인 위험성을 계산했다면 MURRG의 연구를 통해 부품별 위험 가능성이 실시간으로 출력돼 사고 발생 시 곧바로 비상 발전기가 가동된다. 원전을 6기 이상 운영 하는 원전을 ‘초대형 원전 단지’라고 부른다. 현재 전 세계 초대형 원전 단지 11개 중 1/3 이상이 우리나라에 있다. 그만큼 방사능 유출에 경각심을 가지고 관심을 가져야 한다. 끝으로 제 교수는 “MURRG의 연구를 통해 한국 원자력 위험성을 낮추는 데 기여하고 싶다”고 말했다 글/ 김가은 기자 kate981212@hanyang.ac.kr 사진/ 박근형 기자 awesome2319@hanyang.ac.kr

2019-02 25

[학술][이달의 연구자] 백은옥 교수(컴퓨터소프트웨어학부)

한국의 조기발병 위암(40대 혹은 그 이전 젊은 사람에서 생기는 위암) 환자는 전체 위암 환자의 약 15%로 세계적으로 높은 수준이다. 3~40대에 주로 발병하는 조기발병 위암은 다른 암에 비해 환경적 요인보다 유전적 요인이 큰 영향을 미칠 것으로 예상된다. 또한 암세포가 작은 크기로 군데군데 퍼져 있는 미만형(diffuse type)이 많아 발견이 어렵고 전이가 빠르다. 위암 발병의 원인을 파악하기 위해서는 보통 유전자를 분석한다. 더욱 정밀한 분류를 위해선 유전체와 함께 단백체 분석 역시 필요하다. 백은옥 컴퓨터소프트웨어학부 교수는 환자의 유전체와 단백체 분석의 통합적으로 해석하는 연구를 실행 중이다. ▲ 전 세계적으로 연간 약 70만 명 이상이 위암으로 사망한다. (세계보건기구 제공) 암 발병 원인 분석에는 유전자 수준의 분석과 단백질 수준의 분석이 있다. 유전자가 일종의 코드라면 그 코드를 해석한 결과로 생성된 물질이 단백질이다. 단백질은 세포의 현상을 가장 잘 설명해 줄 수 있는 핵심이다. 백은옥 교수는 두 수준의 데이터를 통합하면 더욱 더 정확한 암 정보를 얻을 수 있을 것으로 생각했다. 백 교수가 진행하는 통합적 범주의 조직세포 분석방법(Proteogenomics)은 두 분석에서 얻을 수 있는 정보를 서로 보완하며 깊이 있는 원인 분석을 가능케 한다. 하지만 국내외적으로 단백체 연구는 아직 초기 단계로 관련 소프트웨어가 많이 부족한 실정이다. 백 교수는 미국 국립보건원(NIH, National Institute of Health) 산하 CPTAC(Clinical Proteomic Tumor Analysis Consortium)의 다른 해외 연구자들과 협력해 통합 분석방법(Proteogenomics)을 연구하고 암 치료를 위한 알고리즘을 모으고 있다. ▲ 암 조직세포 통합 분석(유전단백체연구, Proteogenomics) 과정의 대략적인 진행 과정. 젊은 인구 집단을 모집해 유전체 및 단백체 분석 후 mRNA(DNA에서 유전정보를 받아 단백질이 합성되도록 전달하는 유전체)와 단백체의 상관 관계를 확인할 수 있다. (논문명: Proteogenomic characterization of human early-onset gastric cancer) 보통 조직 세포 실험은 세포 조직을 채취해서 시작한다. 그러나 조직 세포가 공기 중에 노출되는 경우 세포 내 단백질이 변성되기 쉽다. 그렇게 되면 병원 수술실에서부터 연구를 위한 기초 작업이 시작돼야 하고, 동일 시료를 여러 번 분석해야 해 연구 과정에 어려움이 많았다. 백 교수는 수월한 연구진행을 위해 10년 이상 한국과학기술연구원(KIST)에서 단백질 연구를 함께한 생물학, 화학, 의학 등 여러 분야의 다수 전문가와 협업 중이다. 또 정확한 결과 도출을 위해 5년간 80여 명의 실제 환자로부터 암 조직과 정상조직을 얻어 분석했다. 아직 기초 연구여서 직접적인 유용성을 주장하긴 어려운 단계다. 하지만 위암과 관련해 밝힌 여러 종류의 데이터를 한꺼번에 볼 수 있는 결과를 얻었다는 것에 큰 의의가 있다. 백 교수는 “똑같은 조기위암 환자도 각각 지니고 있는 유전체 및 단백체의 차이 때문에 발병 원인이 다르고 치료법 역시 달라진다”며 “이 연구를 통해 궁극적으로는 4가지 유형 이상의 개인화된 암 치료법까지 도출할 수 있는 소프트웨어 기반을 마련하겠다”고 설명했다. ▲ 백은옥 컴퓨터소프트웨어학부 교수는 “유전단백체연구(Proteogenomics) 학문 분야가 더 발전돼 많은 소프트웨어로 성과를 내고 연구에 활용되는 것이 목표”라고 말했다. 백 교수는 현재 췌장암 관련 연구에도 도전하고 있다. 앞으로 유전 단백체연구를 통해 조기위암 환자를 포함한 다양한 암 환자들의 정밀한 차이를 고려한 치료의 길이 열릴 것으로 기대된다. 그는 학생들에게“작은 데이터에 국한되지 않고 종합된 시야를 갖춰 깊이 있는 연구를 해야 한다”며 “자신이 다루는 학문에만 매몰되지 않도록 객관적으로 바라보고 여러 다른 정보를 폭 넓게 공부하는 연구자의 자세를 갖추길 바란다”고 말했다. 글/ 김민지 기자 melon852@hanyang.ac.kr 사진/ 박근형 기자 awesome2319@hanyang.ac.kr

2019-02 04

[학술][이달의 연구자] 전병훈 교수(자원환경공학과)

하수처리 또는 정수과정에서 생긴 고체 침전물은 슬러지(Sludge)라고도 불린다. 과연 다른 용도가 있을까 의문이 드는 이 슬러지는 ‘바이오가스(Bio-gas)’라 불리는 신재생에너지로 재탄생 한다. 미생물이 고농도 유기물인 하수 슬러지를 분해하면서 메탄을 포함한 가스를 발생시키는 것이다. 그 때문에 미생물 활동을 활발하게 하는 것이 바이오 가스 생산 공정의 핵심. 전병훈 자원환경공학과 교수가 기름 및 지방 성분(fat, oil, grease, FOG)를 이용해 기존 공정보다 바이오가스 생산을 증진하는 방법을 포착했다. FOG를 사용한 혐기병합소화(Anaerobic co-digestion) 공정에 주목 ▲ 전병훈 자원환경공학과 교수가 기존 혐기소화(Anaerobic digestion) 공정에서 기름 및 지방 성분(fat, oil, grease, FOG)를 추가한 혐기병합소화 공정(Anaerobic co-digestion)을 활용해 바이오가스 생산을 증진하는 방법을 연구했다. 하수처리장으로 모인 고체 폐기물 슬러지는 혐기소화(Anaerobic digestion) 공정을 통해 그 양이 줄어든다. 혐기란 말 그대로 공기를 싫어한다는 뜻으로 밀폐된 공간에서 소화된다는 의미다. 혐기 조건에서 미생물 분해 작용을 통해 하수 슬러지의 양이 줄어듦과 동시에 메탄을 함유한 기체가 발생한다. 이 기체혼합물이 전기를 만드는 연료가 된다. 하지만 들이는 에너지에 비해 우리가 얻는 에너지양은 미비하다. 혐기소화 공정으로는 공정에 투입되는 에너지 중 20~40%밖에 회수하지 못 한다. 생산 효율을 높이는 방법은 없을까? 최근 기존 혐기소화 공정에 지방(Fat), 식용유(oil), 기름(grease)를 포함하고 있는 FOG를 투입해 미생물의 활동을 활발하게 하는 혐기병합소화 공정(Anaerobic co-digestion)이 주목 받고 있다. 혐기병합소화 공정은 높은 농도의 지질학적 폐기물인 FOG를 연소시킴으로써 에너지를 발생시킨다. FOG는 고밀도 탄소를 포함하고 있어 혐기소화 과정에 더해졌을 때 메탄의 양을 매우 증가시킬 수 있다. 분해하려는 슬러지 양의 10~30%에 해당하는 FOG만 넣어도 기존 혐기소화 공정보다 80% 높은 바이오 가스 생산이 가능하다. 그러나 완벽해 보이는 혐기병합소화 공정에도 단점은 존재했다. ▲ 하수처리장에서 슬러지가 모이면 미생물에 의해 분해된다. 이는 메탄을 만들어내는데, 메탄은 다시 용해되어 재생 가능하고 친환경적인 에너지인 에너지를 생성할 수 있다. 이 과정을 혐기성 소화라고 한다. 단점 극복 위해 FOG 샅샅이 분석하다 FOG에 함유된 긴사슬지방산(LCFA, Long chain fatty acids)이 공정을 억제해 슬러지 유동화, 세척 및 폐기물 형성을 방해한다. 전 교수는 이를 해결하기 위해 FOG의 특성부터 신속한 분해를 위한 여러 전처리 기법에 대해 분석했다. 실제 하수처리장 사례를 가지고 하수슬러지-FOG 병합 소화의 최적 반응 조건부터 하수처리장 공정도까지 조사했다. 전 교수는 “슬러지와 FOG의 공동 소자가 바이오 메탄 생산을 크게 증가시켰으며, FOG 로딩, 혼합 강도, 원자로 구성 및 운용 조건 등의 조건에 의해 바이오메탄 생산이 개선됐다”고 말했다. 대체할 수 없는 신재생에너지, 바이오가스 전 교수는 “화석연료의 지속적인 사용으로 지구 환경오염 문제가 심각하다”며 “그에 따라 신재생에너지의 중요성이 대두되고 있다”고 말했다. 또 “전기는 신재생에너지 하면 쉽게 떠오르는 태양열과 풍력 에너지로 확보할 수 있지만, 이들은 그 밖에 다른 용도로는 쓰기가 어렵다”며 “그 빈 자리를 바이오가스가 채울 수 있다”고 밝혔다. “화석연료 고갈로 신재생에너지만 쓸 수 있게 되면, 유일하게 수송 연료나 도시가스로 활용할 수 있는 바이오가스 연구는 그 가치는 더 올라갈 것입니다.” ▲ 전병훈 자원환경공학과 교수(아랫줄 왼 쪽에서 세번째)는 “화석연료 고갈로 신재생에너지만 쓸 수 있게 되면, 유일하게 수송 연료나 도시가스로 활용할 수 있는 바이오가스 연구의 중요성이 높아질 것”이라고 말했다. 글/ 김가은 기자 kate981212@hanyang.ac.kr 사진/ 강초현 기자 guschrkd@hanyang.ac.kr

2019-01 29

[학술][우수R&D] 윤태현 교수(화학과)

기존 산업에서 생산 중인 제품 성능을 혁신적으로 향상할 수 있는 기술로 나노 기술이 주목받고 있다. 나노 소재와 기술들은 이미 반도체, 자동차, 화장품, 의료, 섬유 등 우리 생활 속에 깊숙이 자리하고 있다. 다만 나노 기술의 장점을 최대한 활용하면서 잠재적인 인체 유해성이나 과도한 투자 비용 등 초래할 수 있는 단점들을 줄이기 위한 노력은 여전히 필요하다. 이를 위해 윤태현 화학과 교수는 유럽연합(EU)의 연구혁신분야 재정지원 프로그램 'EU Horizon2020' 사업 중 하나인 ACEnano 국제 컨소시엄에 참가해 연구를 수행 중이다. 기업과 사용자를 위해 필요한 나노 안전성 검증 최근 나노 기술 분야는 나노 소재 연구 개발 단계에서 상업화 단계로 전환에 돌입했다. 그간의 연구개발 성과를 기반으로 향후 나노 산업의 급격한 팽창이 예상된다. 그러나 나노 소재의 안전성 검증 및 규제 대응을 위한 전문성은 여전히 부족한 실정이다. 나노 기술을 이용한 제품이 폐기되는 경우 발생하는 악영향은 엄청나다. 제품 개발 과정에서 인체와 환경에 대한 고려가 없으면 각종 사고가 일어날 수 있다. 실제로 국내에서 가습기 살균제 사고가 있었고, 일본에서는 미나마타병과 같은 화학물질에 의한 질병이 발생했다. 그렇기 때문에 나노 기술 개발에 대한 사전검증 및 규제는 필요하다. 우수한 제품을 개발하더라도 한국과 EU 등 국가별로 법제화돼 있는 각종 안전 규제를 통과해야 시장 판매가 가능하다. 이에 대비하지 못한 기술들이 빛을 보지 못하는 경우도 허다하다. EU에서는 이미 지난해부터 나노물질에 대한 안전성 검증과 규제 등록이 시작된 상태고 한국에서도 2023년부터 시행을 계획하고 있다. 일정에 따라 규제 대응 시스템은 일부 적용 가능한 부분부터 2~3년 이내에 상용화할 수 있을 것으로 보인다. ▲ 윤태현 화학과 교수는 “일반 중소기업은 모든 국가에서 기술 개발 관련 규제가 엄격하고 이에 대해 적절히 대응하는 것이 매우 어렵다”며 “이러한 부분에서 도움을 주기 위해 연구 개발 및 국제 공동협력을 진행하고 있다”고 설명했다. 세계적 장비기업이 다수 참여하는 산학연구협력 윤 교수가 참여하는 ‘ACEnano Toolbox’ 개발 연구는 측정 분석, 시험 지침, 관련 데이터, 나노 소재 및 제품의 등록, 허가 등에 관련된 다양한 나노 안전성 콘텐츠들을 사용자 필요에 맞게 제공하는 전문가 시스템이다. 영국 버밍엄 대학을 중심으로 오스트리아, 스위스, 독일 등 유럽 국가를 중심으로 구성돼 연구한다. 한국에선 한양대학교와 함께 ㈜TO21이 참여한다. ACEnano 컨소시엄은 학교와 연구소뿐 아니라 나노 입자 분석 장비를 직접 연구·개발하고, 제조 판매하는 세계적 장비 기업들이 다수 함께해 진정한 산학연구 협력을 진행 중이다. 본 사업에서 개발한 기술은 국내외 중소기업이 나노 소재의 안전성을 제품 개발 단계에서 미리 확인하는데 도움을 준다. 나노 물질의 물리화학적 특성 및 세포 독성 데이터베이스와 이러한 데이터 세트 기반의 나노 안전성 예측 모델을 만들어 선제적으로 안정성에 대응할 수 있다. 인체와 환경에 미칠 수 있는 큰 악영향 예방도 가능하다. 이를 통해 제품개발 비용 절감은 물론, 효율적이고 친화적인 제품을 만들게 되는 것이다. 장기적으로는 전문가 시스템을 만들어 유럽연합 신화학물질관리제도(EU REACH)와 화학물질의 등록 및 평가 등에 관한 법률(화평법)에 대한 규제 대응 전략으로 적용할 것으로 기대된다. 본 연구진은 상기 성과를 기반으로 유럽의 국제 공동 연구 컨소시엄인 ACEnano 및 NanoSolveIT 참여를 통해 국제 공동 협력 연구 및 시스템 개발 역량을 강화할 계획이다. 더불어 사업의 성과물인 S2NANO(Safe & Sustainable Nanotechnology) 포털(클릭 시 이동)을 나노 소재의 물리화학적 특성 측정부터 유해성 예측까지 전 과정에 대한 실무자 교육, 컨설팅 서비스 등을 제공하는 국제적인 수준의 나노 안전성 종합 포털로 확대할 예정이다. 포털은 올해부터 공식적인 시범서비스를 진행 중이다. ▲ 윤태현 화학과 교수는 연구를 하는 학생들에게 새로운 물질이나 기술에 대한 조심스럽고 유연한 대처와 개발을 강조했다. 더 큰 미래 나노 산업에 대응하는 유연한 연구 자세 윤 교수는 “우리의 건강과 환경보호를 위하여 나노물질을 포함한 화학물질의 관리 및 규제가 필요하다”며 “다만 이러한 규제가 불합리한 근거에 기반하거나, 불필요한 과정 등을 포함하여 산업의 발전에 저해요인이 되는 것 또한 바람직하지 않은 일”이라고 덧붙였다. 그는 연구는 합리적인 최소한의 규제 적용과 대응을 통해 우리의 건강과 환경보호뿐 아니라 새로운 기술 개발 및 산업발전을 촉진할 수 있도록 해야 한다고 말했다. 윤 교수는 마지막으로 학생들에게 “새로운 기술들은 항상 장점과 잠재적 위험을 동시에 지니고 있다”며 “장점을 극대화하고 단점을 최소화하는 방향으로 최적점을 찾는 유연한 접근과 연구를 하길 권한다”고 말했다. 글/ 김민지 기자 melon852@hanyang.ac.kr

2019-01 14

[학술][우수 R&D] 선양국 교수(에너지공학과)

‘GET-Future(겟 퓨처)’는 산업통상자원부와 한국에너지기술평가원(KETEP)이 진행하는 차세대 전지 연구인력 양성 사업이다. 이 프로그램은 우수한 연구 인력을 양성하고, 앞으로 이차전지가 필수인 국제 상황에 적합한 에너지 기술 상용화 연구 단계를 밟는다. “현재 실험 중인 전지를 지속해서 발전시킨 뒤, 실제 상용화를 위한 세계 최고 연구실 구축과 전문인력 확보가 목표”라는 선양국 교수(에너지공학과)를 만나 자세한 사업 방향과 연구 기술의 다양한 활용 형태를 물었다. Get future, 미래 동력을 얻어라 한국 이차전지 산업의 역사는 짧다. 이차전지 산업의 급속한 성장을 이룩한 한국은 다른 전지 사업 선진국에 비해 전문인력 공급과 개발 지원이 부족하다. 이미 오래전부터 ‘리튬-이온 전지’를 뛰어넘는 차세대 이차전지 개발을 진행해 온 미국과 캐나다, 일본, 프랑스 등은 개발한 전지의 상용화를 위한 본격적인 사업에 착수했다. 그러나 차세대 이차전지인 ‘리튬-설퍼 전지’, ‘리튬-공기 전지’, ‘나트륨-이온 전지’는 아직 실용화 단계에서 여러 문제점에 부딪힌 상태다. 이 세 가지 이차전지는 더 많은 연구를 거쳐 최소 오는 2020년까지 실용화될 예정이다. ▲ 세계 배터리 시장 전망과 제품별 연간 매출액 추이 및 전망. (xEV: 전기자동차, ESS: 신재생에너지, IT: 정보통신) (선양국 교수 제공) 시장조사기관SNE리서치와 IBK투자증권에 의하면 전체 배터리 시장은 오는 2025년까지 연평균 27% 증가할 것으로 예상된다. 세계 각국은 리튬-이온 전지의 기술적 한계를 예상해 전지의 성능을 높이고자 노력 중이다. 개발도상국을 포함한 전 세계 195개국의 환경규제 강화와 많은 국가의 내연기관차 판매중단 계획 발표도 한 몫했다. 세계 시장은 급격히 팽창하고 있는데, 국내 기업의 시장 점유율은 아직 낮다. 이에 선양국 교수와 연구팀은 ‘포타슘-이온 전지’ 개발과 함께 이를 뛰어넘는 차세대 전지 개발 및 실제 상용화를 위한 ‘GET-Future’ 사업을 시작했다. ▲선양국 교수(에너지공학과)는 새롭게 개발 중인 차세대 이차전지가 적어도 향후 20년은 사용될 것이라고 말했다. 소형 전지 에너지부터 신재생 에너지까지 납축전지, 니켈-카드뮴 전지, 니켈-수소 전지, 리튬-이온 전지를 거쳐 새로운 결합으로 개발 중인 차세대 이차전지(리튬-설퍼 전지, 리튬-공기 전지, 나트륨-이온 전지)는 리튬-이온 전지 대비 최소 3배에서 최대 10배의 에너지 밀도를 구현한다. 선 교수는 중대형 이차전지 핵심소재의 원천 기술을 개발하고 국내 친환경 에너지 산업의 국제 경쟁력 확보에 기여할 예정이다. 그는 “차세대 이차전지는 기존 소형 전지부터 중대형 전지까지 모두 고성능으로 적용할 수 있고 나아가 친환경 에너지 보급에 기여할 수 있다”며 “휴대폰, 전기차, 신재생에너지와 4차 산업혁명과 관련된 분야까지 적용 가능하다”고 덧붙였다. 가장 크게 전기차 기술의 대외 의존도를 낮출 것으로 기대된다. 플러그인 하이브리드 자동차(PHEV) 및 전기차의 상용화가 가능해져 향후 전개될 친환경 자동차 시장에서 경쟁력을 갖춘다. 자동차뿐 아니라 다양한 전동 기구의 ESS(에너지저장시스템)을 대신할 수 있어 부가가치가 높은 상품의 개발도 쉬워진다. 차세대 산업과 같이 성장할 인력을 또, GET-Future(겟 퓨처)사업은 기술 개발과 더불어 전문 인력 양성도 목표로 한다. 사업을 통해 소형 리튬 이차전지부터 중대형 전력 저장 장치 및 전기자동차용 전지 분야까지 고급 인력 확보에 힘쓴다. 신재생에너지에도 응용 가능해 에너지 관련 모든 업체로 인력 배출이 가능하다. ▲연구실 내에서 선양국 교수(에너지공학과)와 함께 연구팀이 포즈를 취하고 있다. 그는 “이번 사업을 통해 차세대 전지 분야 기술 특허와 국제 경쟁력을 갖출뿐더러, 앞으로 발전의 폭이 큰 이차전지 분야에서 전문성을 갖춘 연구 인력을 확보하겠다”고 말하며 “산학연 연계뿐 아니라 국제적 교류를 통해서도 경쟁력을 갖출 것”이라고 덧붙였다. 앞으로 선 교수와 에너지공학과 연구팀의 차세대 전지 기술 연구 사업이 세계를 선도하는 경쟁력을 확보하길 기대한다. 글/ 김민지 기자 melon852@hanyang.ac.kr 사진/ 강초현 기자 guschrkd@hanyang.ac.kr

2018-12 31

[학술][이달의 연구자] 최재훈 교수(생명과학과)

동맥경화는 혈관에 지질(동식물 조직에 있는 지방)이 쌓여 동맥이 좁아져 심근경색, 뇌경색과 같은 병을 유발하는 만성 염증성 질환이다. 최재훈 교수(생명과학과)는 동맥경화 병변으로 인해 나타나는 대식세포의 특성과 분리 방법을 지난 2012년부터 연구했다. 7년에 걸쳐 진행된 최 교수의 연구 논문 ‘Transcriptome analysis reveals nonfoamy rather than foamy plaque macrophages are proinflammatory in atherosclerotic murine models’는 심혈관 분야의 세계적 권위지 ‘서큘레이션 리서치(Circulation Research)’ 2018년 10월호에 게재됐다. ▲최재훈 교수(생명과학과) 연구팀은 이번 연구를 통해 보통의 대식세포는 염증을 유발하는 반면, 혈관 내 지질을 섭취한 대식세포는 더 활발하게 식작용을 일으켜 염증 유발을 완화한다는 사실을 밝혀냈다. 동맥경화의 새로운 치료방안 지속해서 고지혈증(혈액 중 지방량이 많은 상태)을 앓아온 환자들은 대부분 동맥경화까지 얻게 된다. 고지혈증 환자의 혈관에 지질이 쌓여 염증이 생기면 면역세포인 대식세포는 손상된 조직을 처리하기 위해 혈관으로 모여든다. 처리 과정에서 지질을 삼킨 대식세포는 몸집이 커져 포말세포(Foamy cell)가 된다. 그동안 동맥경화는 포말세포가 염증 반응을 촉진한다고 알려졌고, 대부분의 연구는 포말세포형성을 줄이는 데 초점이 맞춰져 있었다. “동맥경화증을 앓는 환자 혈관에 포말세포가 많이 발견되니까 포말세포형성을 억제해야 병이 낫는다고 생각한 거죠.” 그의 이번 연구 결과는 기존의 동맥경화증 연구 방향을 뒤집었다. 최 교수 연구팀은 포말세포 형성 후에는 오히려 혈관 내 염증반응이 줄어들고, 혈관에 쌓인 지질을 배출하는 능력이 증가한다는 것을 발견했다. 포말세포가 아닌 이전 단계의 대식세포(Nonfoamy cell)에서 염증반응을 억제해야 한다는 것이다. 전문 인력과 인프라가 확충됐으면 최 교수팀은 개별적인 세포 개체의 유전자 발현을 분석할 수 있는 ‘단일 세포 RNA 시퀀싱’(Single cell RNA sequencing) 기술을 사용하기 위해 2017년 1월부터 약 1년간 미국 워싱턴 대학교(Washington University in Saint Louis)에서 연구를 진행했다. 아직 한국에서는 위 기술을 다루는 전문가와 기술이 부족했기 때문이다. “워싱턴 대학교를 비롯한 미국 유수 대학들이 계속 세계적인 바이오 연구 결과를 낼 수 있는 것은, 최첨단 연구 장비와 이를 관리할 수 있는 뛰어난 전문인력들이 확보됐기 때문입니다.” ▲최재훈 교수(생명과학과)는 생명과학에서 중요한 것은 살아있는 생체 안에서 일어나는 현상이 정확하게 분석되는 것이라며 오래 걸리더라도 의미 있는 연구를 하는 것이 중요하다고 덧붙였다. 최 교수의 연구 철학 최 교수는 수의과학대학교에서 학부와 대학원 시절을 보내면서 동물과 사람의 질환에 호기심을 가졌다. “생체 안에서 일어나는 현상을 발견하고 분석하고 싶었어요.” 최 교수는 현재 노령화 시기에 가장 많이 발생하는 심장 판막질환과 그 외 다양한 염증성 질환을 연구하고 있다. 끝으로 최 교수는 한양대학교 학생들이 논문을 한 편 쓰더라도 유용하고 의미 있는 내용을 담길 권했다. 생체 질환을 연구하면서, 더욱 많은 질환 극복에 도움이 되고 싶은 그의 연구 철학이 담겨있는 말이다. “시간이 걸리더라도 개의치 말고 꾸준히 하세요. 다른 연구자들이 많이 인용할 수 있는 논문을 작성하고, 과학사회에 영향력 있는 연구를 했으면 좋겠습니다.” 글/ 옥유경 기자 halo1003@hanyang.ac.kr 사진/ 이진명 기자 rha925@hanyang.ac.kr

2018-12 10

[학술][이달의 연구자] 선양국 교수(에너지공학과)

심각한 환경문제로 인해 에너지 저장 장치(전지) 개발은 전세계적인 화두다. ‘리튬 이온 전지’는 휴대용 전자기기 및 전기 자동차의 주된 에너지 저장원으로 사용된다. 그러나 리튬 사용량 증가로 인해 향후 리튬의 제한된 보급률 및 급격한 가격 상승이 예상돼 리튬을 대체할 수 있는 신규 에너지 저장 장치 개발이 시급한 실정이다. 현재 선양국 교수(에너지공학과) 연구팀은 ‘소듐’에 이어 ‘포타슘 이온 전지’ 소재를 활용한 새로운 에너지 저장 장치 합성 방법을 실험 중에 있다. 신 에너지 저장 장치 ‘포타슘 이온 전지’ 선양국 교수(에너지공학과)와 황장연 박사(에너지공학과)가 연구 중인 ‘포타슘 이온 전지’는 포타슘 이온을 포함하는 고전위 산화물 기반 양극, 포타슘 이온을 저장하는 저전위 탄소 기반 음극, 그리고 포타슘 이온을 전달하는 비수용액계 전해질과 분리막으로 구성돼 있다. 포타슘은 풍부한 매장량과 낮은 환원 전위 특성을 가진다. 리튬을 사용할 때와 충∙방전 매커니즘이 비슷해 현재 보편적으로 사용하는 리튬 이온 전지보다 더 나은 성능을 가진 대체물로서 가장 유망한 후보로 각광받고 있다. ▲ 선양국 교수 연구팀이 개발한 양극 소재인 'K0.69CrO2' 와 기존 문헌에 보고된 포타슘 이온전지 양극 소재들 간의 충/방전 특성 비교. 개발된 소재는 기존 소재들 대비 월등한 충∙방전 횟수를 나타낸다. 하지만 리튬 대비 상대적으로 큰 포타슘 이온의 크기(Li : 0.76 Å vs K : 1.38 Å)는 양극 소재의 합성을 어렵게 해 전기화학반응을 일으키기 쉽지 않다. 원소 주기율표 상으로 볼 때 리튬, 소듐, 포타슘 순으로 알칼리가 내려가면서 이온의 크기가 커진다. 부피와 무게가 커짐에 따라 전지 안으로 이온 저장이 힘들어 발현하는 에너지의 양도 적어진다. 또한 포타슘이 공기 중에서 물이나 산소에 반응성이 높기 때문에 더욱 합성이 어렵다. 이 특성은 충전과 방전이 계속되면서 소재에 손상마저 입힌다. 이러한 이유로 포타슘 이온 전지용 양극 소재 개발이 제한돼 왔다. 그러나 선 교수는 이러한 한계점들을 극복하면 전지의 에너지 양을 대폭 향상할 수 있을 것이라고 생각했다. ▲ 선양국 교수(에너지공학과)의 연구 분야는 소듐 이온 전지와 포타슘 이온 전지다. 자원량이 한정적인 리튬으로 만든 이온 전지와 달리 소듐과 포타슘은 매장량이 풍부해 리튬의 대체제로 사용될 가능성이 높다. (사진 선양국 교수 제공) 결합을 통한 탁월한 소재(K0.69CrO2) 개발 “포타슘만으로 이뤄진 전지는 성능이 그다지 좋지 않다”며 "실제 사용할 수 있는 좋은 성능의 전지는 소듐과 포타슘의 결합으로 만들어진다"고 말했다. 결합에 대한 다양한 접근이 이루어져 왔으나 하지만 여전히 이론에 의존도가 높고, 실험적으로 소재를 합성하더라도 그에 따르는 어려움이 적지 않다. 따라서 선 교수 연구팀은 포타슘보다 상대적으로 반응성이 적은 소듐으로 만든 기존 양극 소재들을 이용하기로 했다. 이 합성법에는 전기화학 이온 교환 전지가 사용되는데 양극에 소듐이온전지용 양극을, 음극에 포타슘 메탈을 사용하여 전기화학적으로 양극 소재내에서 소듐 이온을 모두 제거하고 대신 포타슘 이온을 삽입한다. 실제로 이러한 방법을 통해 합성된 포타슘 기반의 양극 소재(K0.69CrO2)는 구조적으로 매우 안정돼 실제 1000회까지 사용이 가능했다. 이 양극 소재는 초기에 발현한 용량의 65%에 달하는 우수한 수명 유지율과 12분 내 고속 충∙방전이 가능하다는 이점도 있다.선 교수는 “양극 소재를 개발하는 관점에서 포타슘 이온을 더 효과적으로 저장하고 충∙방전 시 구조가 손상되지 않는 것이 연구의 목표”라고 말했다. ▲ 선양국 교수는 현재 연구진과 함께 계속해서 포타슘 이온 전지를 연구 중이다. (사진 선양국 교수 제공) 에너지 공학과 연구팀은 향후 포타슘 양극 소재 개발 연구의 새로운 발판을 마련했다. 선 교수는 이론적으로만 연구했던 분야를 실험적으로 가능함을 보였다. 포타슘 이온 전지가 갖는 소재로 다양한 부재를 해결할 새롭고 쉬운 소재 합성법을 제시한 것이다. 선 교수는 “현재는 크롬(Chromium)을 전이금속으로 한 소재를 사용했지만 해당 합성법은 크롬이 아닌 어떠한 전이금속으로도 결합해 사용이 가능하도록 개발했다”며 “검증된 합성법으로 향후 포타슘 이온 전지용 양극 소재 개발에 대한 더 많은 가능성과 정보를 줄 수 있는 연구”라고 덧붙였다. 글/ 김민지 기자 melon852@hanyang.ac.kr

2018-12 05

[학술][우수R&D] 김보영 교수 (경영학부) (1)

터치 한 번으로 모든 것을 해결하는 시대다. 모바일을 통한 소비까지 가세하면서 유통 업체 간 옴니채널(Omni-channel)을 선점하기 위한 마케팅 경쟁이 치열하다. ‘옴니채널’이란 온라인, 오프라인 할 것 없이 소비자가 언제 어디서든 제품을 구매할 수 있도록 한 쇼핑체계다. 한양대 경영학과 김보영 지속가능경제연구소(Korea Institute of Sustanable Economy, 이하 KISE) 소장이 빅데이터를 활용해 소비자들의 구매 행태 변화를 좇았다. 소비재 식품 유통 사슬 연구에서 빅데이터에 이르기까지 지난 2010년 설립된 한양대 한국 지속가능경제연구소 KISE는 설립 당시 ‘식품 유통’ 연구 분야에 운영 초점을 맞췄다. '식품 안전', '식량 안보', '한국 소비재 식품 브랜드의 글로벌 브랜딩 전략'을 준비한 것이다. 한국-중국 농식품유통이 활발해질수록 식품 안전체계에 대한 관심은 높아졌고, 자연스레 김 교수는 식품 유통 공급 사슬에 주목했다. 식품 유통 시스템, 식량안보, 식품안전 이슈에 다각도로 접근하기 위해 지난 2013년에 건국대 기후변화 연구소와 연합해 식량안보 위기관리 체제에 대해 연구했다. 또한 식품 리스크 커뮤니케이션에 대한 이해관계자의 인식을 식약청과 공동으로 분석해 차별화된 전략을 도출했다. 그러던 중 4차 산업혁명으로 유통 시스템이 뒤집혔다. 소비자가 온라인과 오프라인을 자유롭게 넘나들며 제품을 구매할 수 있게 된 것이다. 이를 계기로 지난 2015년부터 KISE는 소비재 식품유통 분야에서 나아가 유통 산업 전반을 다루기 시작했다. 달라진 소비자의 구매 형태 데이터를 수집해 유통업체들이 이를 토대로 어떻게 발전해야 하는지를 연구했다. 이러한 모델링은 한·중·일에 그치지 않고, 미국과 유럽 소비자 사례까지 다루며 진행됐다. 일본 무인양품(MUJI)사의 소비자 빅데이터 연구도 그 예 중 하나다. ▲ 김보영 지속가능경제연구소(KISE) 소장은 연구소가 설립된 2010년부터 식품유통과 글로벌 마케팅 전략에 초점을 맞춰 국내 기업이 경쟁력을 지닐 수 있도록 많은 연구를 진행했다. KISE, 빅데이터를 활용한 6가지의 연구 과제 선정 지난 3월 26일, KISE는 일본 히토츠바시 대학교, 후쿠오카 대학교와 함께 옴니 채널과 빅데이터를 다루는 글로벌 포럼을 개최했다. 포럼을 통해 유통 산업 빅데이터를 활용한 6가지 연구과제를 선정했다. ▲옴니 소비자 집단 세분화(Omni consumer segmentation) ▲옴니 소비자 쇼핑 경로 분석(Customer engagement analysis) ▲고객 참여 분석(Association rule mining) ▲글로벌 브랜드 경험 연구(Global Brand experience study) ▲유통 브랜드 가치 모델링 (Building retail attribute vs Retain brand equity model) ▲ 소비자의 SNS 행태가 브랜드가치에 미치는 영향 분석(SNS effects on consumer brand preference)을 연구 주제로 삼았다. 김 교수는 6가지 연구 과제 중 이미 2개를 마친 상태다. ▲ 김보영 교수는 향후 4차 산업혁명이 한국에 가져올 유통 시스템과 소비자들의 변화를 빅데이터를 통해 예측하고 연구해야 한다고 했다. 한국 유통 기업이 글로벌 경쟁력을 갖추는 그날까지 김 교수는 앞으로 KISE의 활동에 주목해야 하는 이유에 대해 “국내 산업체 빅데이터 접근이 까다로워 지금까지 해외 기업 데이터 분석만 다뤘던 반면 KISE의 목표는 국내 기업 빅 데이터를 통해 유통, 마케팅 및 글로벌 브랜드 전략으로 글로벌 경쟁력을 강화하는 것”이라고 말했다. KISE는 2010년부터 사회과학인용색인 (SSCI)급 및 한국학술지인용색인 (KCI)급 논문을 수십 편 발표한 바 있다. “한국연구재단 Social Science Korea (SSK) 지원사업을 통해 현재 KISE의 연구과제를 진행할 수 있었다” 며 “지원이 종료되는 2020년 후에도 지속가능한 연구를 위해 KISE는 국책사업에도 도전할 예정"이라는 목표를 밝혔다. 글/ 김가은 기자 kate981212@hanyang.ac.kr 사진/ 박근형 기자 awesome2319@hanyang.ac.kr

2018-10 30

[학술][이달의 연구자] 강영종 교수(화학과)

새로운 미래 에너지원으로 지목된 '페로브스카이트(Perovskite)'. 태양의 빛에너지를 전기에너지로 쉽게 변환해 태양전지부터 연료전지까지 활용이 가능한 특별한 구조의 금속 산화물이다. 최근 이 페로브스카이트를 활용한 다양한 연구가 활발히 진행되고 있다. 이렇게 변환된 전기에너지를 빛으로 바꾸는 우수한 발광소자 특성도 화제다. 이에 강영종 교수(화학과)는 ‘크기 배제효과 가공기술(Size-Exclusion Lithography)’을 이용한 페로브스카이트 복합소재 필름 제작기술을 새롭게 발표했다. 페로브스카이트가 가진 발광소자로서의 기존 한계점을 극복하고 디스플레이 산업에서의 상용화를 앞당겼다는 평이다. ▲ 강영종 교수(화학과)가 지난 27일 연구실에서 인터뷰를 진행했다. 이번 연구를 통해 안정성 높은 새로운 페로브스카이트(Perovskite) LED/필터 공정기술이 탄생했다. 최근 페로브스카이트가 차세대 LED 산업군에서 주목받고 있다. 다른 무기 나노입자 보다 선명한 색을 구현할 수 있기 때문이다. LED는 적색, 청색, 녹색의 다이오드를 혼합해 다양한 색상의 빛을 표현한다. 화면에 이미지를 표현하려면 서로 다른 다이오드를 정확하게 위치시키는 것이 중요한데, 이를 패터닝(patterning)이라 부른다. 기존 LED 공정에서는 얇은 기판 위에 회로를 그려 자외선을 이용해 패턴을 깎아내는 리소그래피(Lithography) 기법을 이용했다. 하지만 페로브스카이트는 수분에 매우 취약해 대기 중 산소와 습기에 불안정했다. 페로브스카이트에 적합한 새로운 공정기술이 필요했다. 강 교수는 '크기 배제효과 가공기술(Size-Exclusion Lithography)’을 이용한 페로브스카이트 복합소재 필름을 만들어냈다. 고분자 내에 페로브스카이트 나노입자를 넣어 자외선을 쬐면 나노입자의 크기 변화로 패터닝이 일어나는 기술이다. 즉, 얇은 기판 위에 코팅돼 있던 고분자는 자외선에 노출되면 체인 형태로 꼬이면서 크기가 작아지고 나노입자는 커지면서 한쪽으로 이동하게 된다. 그 과정에서 페로브스카이트 나노입자가 고유의 색을 발산하며 자체적인 패터닝이 일어나는 것이다. ▲ 강영종 교수가 개발한 '크기 배제효과 가공기술(Size- Exclusion Lithography)'을 이용한 페로브스카이트 복합소재 필름의 원리. 나노입자의 크기 변화로 페로브스카이트의 패터닝이 일어나는 기술이다.(강영종 교수 제공) 페로브스카이트는 기존 식각과정 대신 나노입자들의 자체적인 이동을 통해 수분에 강해졌다. 대기 중에 한두 시간 노출되면 사라지던 빛이, 끓는 물에 하루 정도 넣어도 그대로 유지됐다. 또한 자외선 조성을 약간만 조절하면 색상변화가 쉽게 가능해 기판에 마이크로 크기의 다양한 문양을 나타낼 수 있다. 강 교수가 연구를 시작한 지 2년 만에 높은 안정성을 갖춘 새로운 페로브스카이트 LED/필터 공정기술이 탄생했다. “이번 연구로 페로브스카이트 LED/필터 상용화에 한 발짝 다가간 거라 생각해요.” 강 교수는 앞으로 페로브스카이트와 디스플레이를 연결하는 실질적인 연구에 앞장설 계획이다. “연구는 실패가 뻔히 보이는 길일지라도 도전하고 그것을 즐기는 과정이라 생각해요. 한양대학교 학생들도 졸업 전에 연구를 통해 그런 경험을 얻어갔으면 합니다.” 강 교수는 고분자에 대한 주된 연구뿐만 아니라 다양한 분야에 열정을 가지며 스스로 국한되는 것을 경계한다. “학생들과 소통하면서 다각도에서 연구를 바라보는데 즐거움을 느낍니다. 덕분에 새로운 분야에 계속 도전하고 있죠. 앞으로 사회에 기여할 수 있는 실용적인 연구에 더 관심을 가지려 해요.” 강 교수가 보여주는 열정은 앞으로 그의 연구가 기다려지는 이유다. ▲ 강영종 교수는 여러 취미 생활을 통해 연구를 계속할 활력을 얻고 있다. 힘든 연구의 연속이지만 결과를 얻었을 때 희열을 느낀다는 강 교수의 다음 연구를 기대해본다. 글/ 황유진 기자 lizbeth123@hanyang.ac.kr 사진/ 박근형 기자 awesome2319@hanyang.ac.kr

2018-10 08

[학술][이달의 연구자] 박원일 교수(신소재공학부) (1)

리튬이온 배터리는 우리 주변 곳곳에서 쓰인다. 핸드폰, 노트북, 전기 자동차, 에어팟(AirPods) 등 무선(wireless)제품에는 리튬이온 배터리가 빠질 수 없다. 박원일 교수(신소재공학부)는 바로 이 리튬이온 배터리에 집중했다. 보통 핸드폰을 100% 충전시키기 위해서는 1시간에서 2시간이 소요된다. 박 교수는 이를 단 3분으로 줄였다. 원리가 무엇일까? ▲ 박원일 교수(신소재공학부)가 이번 연구의 핵심인 리튬이온 배터리의 충전 원리에 대해 설명하고 있다. 리튬이온 배터리에는 내부에는 양극, 음극, 액체 전해질이 있다. 배터리가 충전 되려면 리튬이온이 액체 전해질을 타고 음극에서 양극으로 이동해야 한다. 현재 리튬이온 배터리의 음극을 이루는 활물질(전지가 방전할 때 화학적으로 반응하여 전기에너지를 생산하는 물질)은 흑연이다. 차세대 대체물질로는 실리콘이 대두된다. 에너지 밀도가 흑연보다 10배 이상 크기 때문이다. 하지만 박 교수는 실리콘 대신 규화니켈을 사용했다. “문제는 대체물질이 아니라 ‘부반응(solid electrolyte interphase)층’ 입니다. 음극과 전해질 사이의 계면(기체, 액체, 고체 중 2개의 상이 접할 때 상과 상 사이에 형성되는 경계면)에서 고체로 이루어진 부반응 층을 해결하는 게 관건이죠.” 리튬이온이 부반응 층에 가로막혀 제 기능을 못하기 때문이다. 박 교수는 활물질 안에 전압이 생기도록 하는 방법을 고안했다. 활물질인 규화니켈 밖에는 부반응층이 생겨도 안에는 부반응 층이 생기지 않는다. 이 원리를 이용하면 전류가 통할 수 있다. 박 교수의 이번 논문 ‘Controlling electric potential to inhibit solid-electrolyte interphase formation on nanowire anodes for ultrafast lithium-ion batteries’의 제 1저자이기도 한 장원준(신소재공학 석사과정) 씨는 이 개념을 적용하면 배터리 성능이 좋아지고 충전속도가 빨라진다고 밝혔다. “보통 리튬이온 배터리는 500회 이상 충전하면 성능이 안 좋아져요. 하지만 저희는 3분만에 핸드폰 배터리가 완충되는 조건으로 2000번을 실험했습니다. 성능은 거의 떨어지지 않았어요.” ▲ 연구를 진행한 논문의 저자들이 실험실 기구를 보여주고 있다. (왼쪽에서부터) 장원준(신소재공학 석사과정), 박원일 교수(신소재공학부). 박 교수가 이번 논문과 연구를 통해 강조하고 싶은 건 단연 ‘부반응층 억제’다. 1년 반이라는 연구 기간 동안 부반응 층이 활물질 표면에만 생긴다는 개념을 증명하기 위해 약 1년을 투자했다. 박 교수의 연구는 끝나지 않았다. “부반응 층을 억제하는 개념을 확장해서 전기 화학 셀(electrochemical cell)에 적용하고 싶어요.” 하나의 연구에서 또 다른 연구로 나아가는 박 교수의 행보가 기대된다. 글/ 옥유경 기자 halo1003@hanyang.ac.kr 사진/ 박근형 기자 awesome2319@hanyang.ac.kr