전체 9건
뉴스 리스트
게시판 리스트 컨텐츠
2019-08 05 중요기사

[학술][이달의 연구자] 김도환 교수, 유기반도체 겔(Gel)개발로 유기반도체 내구성 향상

영화 ‘아바타’의 등장인물들과 함께 하늘을 날고, 세계적인 축구 스타 리오넬 메시를 내 집 거실로 불러올 수 있는 시대다. 가상현실(VR)과 증강현실(AR)의 발전으로 불가능했던 일들이 우리 주변에서 일어나고 있다. 하지만 오랜 시간 VR·AR 기기를 착용하면 낮은 해상도로 인해 멀미와 어지럼증을 동반한다. 김도환 화학공학과 교수는 이를 해결할 수 있는 ‘유기반도체 겔(Gel)’을 개발했다. 유기반도체란 기존의 실리콘 반도체를 대체할 수 있는 유기화합물 기반의 차세대 반도체를 말한다. 최근 플렉서블 (휘어지거나 접어지는), 스트레쳐블(늘어나는) 전자기기 제작에 쓰여 많은 관심을 받고 있다. 하지만 물리적 충격에 약하고 용액공정 기반의 유기발광다이오드(OLED) 발광형 유기반도체를 연속적으로 가공할 수 없었다. 핵심적으로는 기존 실리콘 반도체 제작 과정인 포토리소그래피(Photolithography) 패턴 공정을 이용할 수 없었던 것. 김 교수 연구팀은 유기반도체가 전기적, 광학적, 기계적 성능을 유지하면서 기존 포토리소그래피 공정을 이용할 수 있는 방법을 알아냈다. ▲ 김도환 화학공학과 교수가 내구성이 우수한 ‘유기반도체 겔(Gel)’을 세계 최초로 개발했다. 김 교수는 유기반도체 겔(Gel) 소재변환 기술을 개발해 유기반도체의 내구성을 향상시킬 수 있는 구조체인 유기실리카 네트워크 간 ‘3차원 초밀도 엉킴구조’를 만들어냈다. 유기반도체 사슬과 유기실리카 사슬의 결합으로 내구성이 강한 겔 사슬을 제작한 것이다. 이 연구로 초고해상도 적층형 유기 전자소자를 제작한 김 교수 연구팀은 이어 고해상도 유기전자회로와 올레드 마이크로디스플레이 제작도 성공했다. 이번 연구 결과를 통해 VR·AR 기기 성능이 극적으로 향상될 것이라는 평을 받고 있다. 또한 빛을 흡수하는 수광형 겔은 고해상도 패턴 제작이 가능해 고해상도 이미지 센서 제작도 가능할 것으로 보인다. ▲ 김 교수 연구팀이 개발한 엉킴구조. 유기실리카 네트워크 간 ‘3차원 초밀도 엉킴구조’를 유도하는 소재 변환기술을 개발해 기존 유기반도체의 한계를 극복했다. (김도환 교수 제공) 김 교수는 연구를 시작하게 된 계기에 대해 “학생 연구원과 달걀의 비가역적(돌이킬 수 없는) 변성에 대해 논의하다 연구를 시작했다”고 말했다. “상온에서 달걀흰자는 물에 용해되지만, 열을 가해 하얗게 변하고 나면 액체화 되지 않는다”며 “열을 가해 분자가 얽히면서 네트워크가 구성되는 졸겔 법(Sol-gel process)을 반도체에 적용했다”고 설명했다. 이번 연구는 재료과학 분야 세계적인 학술지 ‘어드밴스트 머티리얼스(Advanced Materials)’ 7월호에 표지논문으로 게재됐으며, 관련 기술로 5건의 국내외 특허를 등록 및 출원한 상태다. ▲ 김도환 교수(왼쪽에서 두번째)와 이번 연구에 참여한 학생 연구원들이 함께 포즈를 취하고 있다. 글/ 김가은 기자 kate981212@hanyang.ac.kr 사진/ 김주은 기자 coram0deo@hanyang.ac.kr

2019-07 22 중요기사

[학술][이달의연구자] 이상욱 교수, 컴퓨터 시뮬레이션으로 신재생에너지 세계를 열다

‘촉매’가 다시 한번 주목받고 있다. 최근 촉매 기술이 수소에너지 생산, 고효율 연료전지 및 에너지저장장치(ESS) 개발 등 신재생에너지 분야에 핵심 역할을 하면서다. 보통 화학 공정에서는 철이나 알루미늄, 구리, 니켈 등 저가 금속을 촉매로 사용해도 대량생산에 필요한 효율을 얻을 수 있다. 하지만 신재생에너지 분야는 다르다. 신생 기술이다 보니 관련 연구가 충분히 이뤄지지 않아 고가 금속을 사용해야 한다. 이상욱 화학분자공학과 교수는 값비싼 희토류 대신 탄소 등 비금속 물질을 촉매로 사용할 수 있도록 돕는 컴퓨터 시뮬레이션 방법론을 개발했다. 화학반응에서 자신은 소모되지 않으면서 반응 속도를 더 빠르게 혹은 느리게 조절하는 물질을 촉매라 한다. 마치 터널처럼 높은 산을 이전보다 단시간에 통과할 수 있게 하는 역할이다. 이전에는 합성수지, 포장재, 자동차 내외장재 등을 만드는 데 쓰였지만 현재는 신재생에너지 개발에 쓰이고 있다. 하지만 재료비로 인한 경제적 부담이 만만치 않다. 수소에너지를 예시로 물을 전기 분해하기 위해 촉매로써 백금을 사용해야 하는데 그 값만 약 40억~50억 원이 들어간다. 따라서 값싼 촉매 개발에 무엇보다 중요하다. ▲ 이상욱 화학분자공학과 교수가 값비싼 희토류 대신 탄소 등 비금속 물질을 촉매로 사용할 수 있도록 돕는 컴퓨터 시뮬레이션 방법론의 필요성에 대해 설명하고 있다. 촉매 소재 개발을 위해서는 촉매 표면에 주목해야 한다. 현재 이론적으로 알려진 촉매 반응 메커니즘은 엘레이 리디얼 반응(ER, Eley-Rideal Reaction)과 랭뮤어 힌쉘우드 반응(LH, Langmuir-Hinshelwood Reaction) 두 가지로 구분된다. 기존 연구개발은 에디슨식 접근으로 각각의 물질을 하나씩 모두 실험해보고, 그중 되는 하나를 찾느라 비효율적이었다. 이 교수는 인실리코(In Silico) 방식을 사용해 컴퓨터 시뮬레이션 작업으로 많은 물질의 특성을 동시에 해석했다. 양자역학/분자 동역학 기반의 전산 작업을 통해 전자 재료 소재, 에너지 소재, 나노 소재의 물리 화학적 성질을 알아낸 것이다. 이는 전자, 원자 수준에서 구조와 물리적 성질 사이의 상관관계를 해석했다는 점에서 의미가 깊다. ▲ 이상욱 교수가 개발한 컴퓨터 시뮬레이션 방법론 OPNS(One probe & NEGF surface)을 통해 촉매 표면에서 나타나는 두가지 반응인 엘레이 리디얼 반응(ER, Eley-Rideal Reaction)과 랭뮤어 힌쉘우드 반응(LH, Langmuir-Hinshelwood Reaction)을 구분할 수 있다. (이상욱 교수 제공) 이 교수는 컴퓨터 시뮬레이션을 연구에 적용하게 된 계기에 대해 “그래피틱 카본 나이트라이드(graphitic carbon nitride) 소재를 해석을 요청받아 연구하던 중 보편적으로 사용되는 에디슨식 접근 방법이 문제가 많다는 것을 깨달았다”며 “화학반응은 반드시 전자의 흐름을 명확하게 고려해야 하는데, 기존의 방법으로는 소 뒷걸음질 치다가 쥐 잡은 격으로밖에 연구하지 못했다”고 밝혔다. 때문에 이번 연구도 고성능컴퓨팅(HPC) 서버로 컴퓨터 시뮬레이션으로 자연현상에서 벌어지는 원자, 전자 운동 수식을 풀었다고 밝혔다. 이 교수는 “기존의 실험적인 연구 방법만으로는 전쟁터에 칼 한 자루만 들고 나가는 것”이라며 “기존의 실험적인 방법과 컴퓨터 시뮬레이션 방법 두 가지가 동시에 선행되어야 방패도 가지고 나가는 것”이라고 말했다. ▲ 이상욱 교수가 이번 연구에 사용된 고성능컴퓨팅(HPC) 서버를 가리키며 “1000개가 넘는 코어를 통해 컴퓨터 시뮬레이션 작업이 이루어지고 있다”고 말했다. 글/ 김가은 기자 kate981212@hanyang.ac.kr 사진/ 이현선 기자 qserakr@hanyang.ac.kr

2019-06 26 중요기사

[학술][이달의 연구자] 김태욱 교수, 식물 스테로이드 호르몬을 연구하다

아무것도 하지 않아도 불안하고 짜증이 반복된다. 갱년기는 인간 몸의 호르몬 균형이 망가지면 나타나는 현상이다. 인간뿐만 아니라 식물도 그렇다. 특히 식물은 호르몬의 영향을 크게 받는데, 심각하면 죽을 수도 있다고 한다. 한양대 유일 식물학자 김태욱 자연과학대학 생명과학과 교수의 식물 호르몬 이야기를 들어보자. 인간 몸에서 호르몬이 만들어지면, 세포가 반응한다. 이 작용은 생리적 반응으로 이어진다. 식물도 마찬가지다. 김 교수는 호르몬에서 생리적 반응으로 이어지는 식물의 세포 신호 전달을 연구하고 있다. “식물이 커지고, 세지는 데는 식물 스테로이드 호르몬인 브라시노스테로이드(brassinosteroid, BR) 호르몬이 영향을 끼칩니다. BR 호르몬이 생성되는 과정과, 영향을 주는 요소를 연구했습니다.” ▲ 김태욱 생명과학과 교수가 브라시노스테로이드(brassinosteroid, BR) 호르몬이 어떻게 표면의 수용체부터 핵에 위치한 전사인자까지 영향을 미치는지 설명하고 있다. BR 호르몬은 단백질과 상호작용한다. 먼저 세포 표면에 위치한 수용체가 BR 호르몬의 진입을 감지한다. BR 호르몬은 세포 가장 위에 있는 수용체부터 맨 아래 핵에 위치한 전사인자에까지 신호를 전달한다. 김 교수는 “신호 전달 과정을 좇다 BR 호르몬을 통해 분해를 촉진하는 새로운 인자를 발견했다”며 “바로 가장 하위(Plant U-Box)에서 작용하는 전사인자”라고 소개했다. 김 교수는 “BR 호르몬 연구는 이제 마무리 단계”라며 “앞으로는 식물의 공변세포가 열고 닫힐 때 생기는 구멍인 기공을 연구해 미세먼지를 제거하는데 탁월한 식물 개발 연구를 확장시키고 싶다”고 말했다. 덧붙여 “호르몬이 유전자에 영향을 미치는 과정에서 식물을 연구하는 순수과학의 재미를 찾을 수 있다”며 “학생들이 앞으로 순수과학에 많은 관심 보여줬으면 좋겠다”고 전했다. ▲ 김태욱 교수(앞줄 가운데)는 앞으로의 연구 방향에 대해 “미세먼지를 제거하는데 탁월한 식물을 개발하고 싶다”고 밝혔다. 글/ 김가은 기자 kate981212@hanyang.ac.kr 사진/ 김주은 기자 coram0deo@hanyang.ac.kr

2019-06 09 중요기사

[학술][우수 R&D] 장준혁 교수, AI 활용한 음성인식 기술로 산학협력 앞장서

영화 ‘아이언맨’ 속 인공지능(AI) 비서 자비스는 토니 스타크(아이언맨)의 일정 관리부터 저택 관리, 나아가 전투까지 보조한다. 음성인식으로 스마트폰, 자동차, 심지어는 집도 제어할 수 있다. 장준혁 융합전자공학부 교수는 삼성의 빅스비(Bixby), 현대자동차의 음성인식 시스템에 이르기까지 자비스 상용화의 최전선에 서 있다. 장 교수가 이끄는 음성음향 오디오 신호처리연구실(Acoustics speech audio signal processing lab, 이하 ASAP Lab)이 그리는 인공지능과 함께하는 미래를 알아보자. ASAP Lab에서는 음성인식 기술을 비롯한 음성 신호처리, 바이오 신호처리 연구를 진행하고 있다. 음성인식이란 사람이 말하는 음성 언어에서 특징들을 학습해 그 내용을 텍스트로 변환하는 기술이다. 장 교수는 사람의 음성을 컴퓨터, 로봇이 인식하는 분야는 도전적이라고 말했다. “AI가 발전하기 전에는 음성인식 기술이 지금처럼 성능이 뛰어나지 않았다”며 “기존의 음성인식 기술에 AI를 결합하자 스마트폰, 자동차, 로봇에 있어서 폭발적인 파급력을 가지게 됐다”고 설명했다. ▲ 장준혁 융합전자공학부 교수가 이끄는 음성음향 오디오 신호처리연구실(Acoustics speech audio signal processing lab, ASAP Lab)에서는 스마트폰, 자동차, 로봇에 적용할 수 있는 AI기반 음성인식 기술을 개발하고 있다. 장 교수가 이끄는 ASAP Lab의 강점은 상용화다. 스마트폰, 자동차, 로봇 산업체를 종횡무진 활약하고 있다. ASAP Lab은 삼성의 빅스비, 현대자동차의 AI 카닥터 및 음성인식 엔진, LG의 Q보이스, 인천공항 안내 로봇 ‘클로이’의 엔진을 공동 개발했다. 장 교수는 “현대자동차 AI 카닥터를 개발할 때 데이터베이스, 딥러닝(deep learning·심층학습), 응용을 바탕으로 연구했다”고 말했다. AI 카닥터는 소음으로 차량의 고장 여부를 판별하고 고장 부위를 진단하는 기술이다. 먼저 자동차 모든 부품을 하나씩 고장 내 소리 데이터베이스를 만들었다. 딥러닝은 충분한 데이터를 필수로 한다. 장 교수는 수학적인 방법과 신호처리 방법을 활용해 부족한 데이터를 증폭시켰다. 가능한 경우의 수를 확률모델로 구상하고 확률 데이터를 따르는 새로운 데이터를 생성하고 컴퓨터 시뮬레이션을 통해 다양한 환경에서의 소리 데이터를 만들었다. ASAP Lab의 연구는 고장부위를 진단하는 정답률이 8.6%에서 87.6%로 올랐다는 평가를 받았다. ▲ 장준혁 교수는 "데이터 베이스 구축, 딥러닝(Deep learning·심층학습) 그리고 응용을 바탕으로한 3단계 연구로 음성인식 원천 기술을 개발했다"고 밝혔다. (장준혁 교수 제공) 장 교수가 음성인식 연구로 이루고 싶은 꿈은 무엇일까. 장 교수는 “목소리만으로 자연스럽게 모든 기기를 제어하는 미래를 꿈꾼다”며 “집에서는 스마트폰 혹은 AI 스피커를 통해 냉장고, 에어컨, TV를 제어하고, 운전할 때 명령으로 와이퍼, 라디오, 내비게이션을 작동하는 연구를 계속할 것”이라고 말했다. “자율주행 자동차가 개발되는 시점에는 운전자가 목소리만으로도 가고자 하는 목적지의 날씨와 교통 정보를 알 수 있도록 하겠습니다” ▲ 장준혁 교수는 “목소리만으로 집안의 냉장고, 에어컨, TV와 자동차의 주요 기능을 제어하는 미래를 꿈꾼다”며 “앞으로도 음성인식이 생활 속에 자연스럽게 녹아들 수 있게 하는 연구를 계속할 것”이라고 밝혔다. 글/ 김가은 기자 kate981212@hanyang.ac,kr 사진/ 김주은 기자 coramOdeo@hanyang.ac.kr

2019-05 01

[학술][이달의 연구자] 임종우 교수(컴퓨터소프트웨어학부)

공항에서 수상한 사람을 찾고자 한다. 인천국제공항만 해도 설치된 폐쇄회로TV(CCTV)는 약 1만 개. 사람의 눈으로 일일이 확인하기에는 상당한 시간이 필요하다. 이때 활용할 수 있는 기술이 CNN(Convolutional Neural Network)이다. CNN은 이미지의 특성을 뽑을 수 있도록 층(Layer)을 구성해 비디오에서 사람이나 사물의 위치를 알아낸다. 임종우 컴퓨터소프트웨어학부 교수는 찾고자 하는 물체의 위치 정확성을 높이기 위해 중요도가 높은 층의 가중치를 자동으로 조절하는 알고리즘을 개발했다. 기존 물체 추적 기술에서 정확성을 높인 임 교수의 ‘Hedging Deep Features for Visual Tracking’ 연구는 패턴인식 및 인공지능 분야의 최고 권위 학술지인 국제전기전자공학회(IEEE)가 발행하는 ‘IEEE TPAMI(Transactions on Pattern Analysis and Machine Intelligence)’지에 게재됐다. CNN은 뇌에서 어떤 물체가 무엇인지 판단하는 과정과 유사하다. 우리가 그 물체의 특징을 관찰하고, 기존에 알고 있었던 이미지들과 비교해 결정하는 것처럼 말이다. 다만 컴퓨터에서는 해당 이미지와 기존 이미지들을 비교하기 위해서 층(Layer)과 라벨(Label)을 사용한다. 이미지를 CNN의 입력으로 넣어, 정확하게 해당 이미지를 라벨별로 구분하는 것이다. 이미지를 픽셀 단위로 쪼갰을 때 나오는 수치의 분포를 바탕으로 입력의 특징을 뽑아내고, 이를 바탕으로 물체를 구분한다. 임 교수의 연구는 물체가 무엇인지를 판단하는 것에서 나아가 동영상 안에서 물체의 위치를 추적한다. 동영상에서 물체의 위치를 정확히 추적하기 위해서는 물체의 종류와 의미에 대한 정보와 위치에 대한 정보 모두 필요하기 때문에 각기 다른 층에 있는 정보를 융합해야 한다. ▲ 임종우 컴퓨터소프웨어학부 교수는 중요도가 높은 층의 가중치를 높여 물체의 위치 정확성을 높이는 헤징(Hedging) 알고리즘을 개발했다. 임 교수는 중요도가 높은 층의 가중치를 높여 물체의 위치 정확성을 높이는 헤징(Hedging)을 여러 층의 정보를 융합하는 데 적용하자고 제안했다. 기존에는 새 프레임이 입력되면 CNN 각 층에서 연관성 필터(Correlation filter)를 이용해 해당 층의 특징으로 위치를 추정했다. 임 교수의 알고리즘을 연구에 적용하면 지금까지의 각 층의 결과를 기억하여 현재 프레임에서 효과적인 층을 선택할 수 있도록 각 층의 가중치를 자동으로 조절할 수 있게 된다. 또한 물체의 크기가 변하는 상황을 대비해 규모 검색 단계(Scale search step)를 추가했다. 임 교수는 하얼빈공업대학(Harbin Institute of Technology) 연구진과 캘리포니아 대학교(The University of California, Merced) 양밍 호앙(Ming-hsuan Yang) 박사와 딥러닝(Deep learning)에서 학습한 시각적 특징을 물체 추적에 활용하는 기법을 찾다가 이번 연구를 시작하게 됐다. 이번 연구는 임 교수가 2016년에 발표한 헤징 딥 트랙킹(Hedged deep tracking)을 확장한 결과다. 이전에는 각 층에서 얻어진 위치 정보를 단순한 방법으로 융합하는 방식이었다면, 올해는 헤징 기법으로 이용하여 각 층의 특징을 선택적으로 융합했다. ▲ 임 교수의 Hedging Deep Features for Visual Tracking 연구는 국제전기전자공학회(IEEE)가 발행하는 ‘IEEE TPAMI(Transactions on Pattern Analysis and Machine Intelligence)’지에 게재됐다. 임 교수는 “딥러닝 기법을 이용한 물체 추적 분야에서는 단일 물체 추적 기법을 확장해 다중 물체 추적에 대한 연구를 진행하려 한다”며 “인공지능과 그 관련 분야인 컴퓨터 비전, 데이터 마이닝 등의 연구를 활발하게 진행할 것”이라고 향후 연구 계획을 밝혔다. “또한 연구실의 학생들과 자율주행, AR/VR, 로봇 등에 활용될 수 있는 영상 기반 3차원 복원과 자세 추정에 대한 다양한 연구를 진행하고 있다”며 “학생들이 최신 전문 지식을 학습하고 본인의 역량을 키울 수 있는 다양한 기회를 접하길 바란다”라고 덧붙였다. 글/ 김가은 기자 kate981212@hanyang.ac.kr 사진/ 김주은 기자 coramOdeo@hanyang.ac.kr

2019-03 10 중요기사

[학술][우수R&D] 제무성 교수(원자력공학과)

세계 200여 개 국가 중 30개국에서 원전(원자력발전소)이 가동되고 있다. 미국이 99기, 러시아가 36기를 운전 중이다. 한국에는 몇 기가 있을까? 놀랍게도 미국, 러시아보다 영토가 확연히 작은 한국은 25기를 보유하고 있다. 한국은 세계 원전 밀집도 1위다. 특히 올해로 8주기를 맞은 ‘2011년 후쿠시마 원전 사고’는 원전에 대한 불안감을 더했다. 우려의 목소리가 높은 만큼 원전을 안전하게 운영하는 방안은 무엇보다도 중요하다. 한양대 제무성 원자력공학과 교수는 한국의 원전 안전 드림팀인 ‘다수기 확률론적 안전성평가(PSA) 규제 검증 기술개발 사업단(이하MURRG, Multi-Unit Risk Research Group)’의 총괄을 맡고 있다. 그가 들려주는 안전한 대한민국 이야기에 귀 기울여 보자. ▲ 제무성 원자력공학과 교수가 이끄는 ‘다수기 확률론적 안전성평가(이하 PSA) 규제 검증 기술개발 사업단(이하MURRG, Multi-Unit Risk Research Group)’에서 기존 3단계 PSA 규제 검증 기술에서 ‘부지 리스크 평가(SRA, Site Risk Assessment)’를 추가해 원전의 안전성을 높이는 연구를 진행하고 있다. 부산에 위치한 고리 원전 단지의 경우, 신고리 56호기까지 건설된다면 총 9기가 밀집해 있는 원자력 밀집 단지가 된다. 반경 30 ㎞ 안에 382만 명의 인구와 부산, 울산 등 국가산업 단지가 위치해 있는 곳에 원전이 9기가 있다는 뜻이다. 만약 예측할 수 없는 대규모 외부 재해가 이곳에 일어난다면 동시에 중대 사고가 예상된다. 많은 양의 방사선 물질이 원자로 핵연료 내부에서 축적돼 있기 때문에 바로 냉각시키지 못하면 방사성 유출이 진행된다. 이 때문에 기존 원전 부지에 신규 원전을 추가할 때에는 이로 인한 영향을 측정하기 위한 다수기 확률론적안전성평가(이하 PSA)가 이뤄진다. PSA는 원전에 발생할 수 있는 모든 사고의 종류와 이 사고가 발생할 가능성 및 사고로 인한 영향을 확률론적 방법으로 정량화해 평가하는 기법이다. PSA는 사고의 가능성을 3단계로 나눠 평가한다. 1단계는 원자로 내에서 사고가 날 확률, 2단계는 원자로를 둘러싼 돔 건물이 깨질 확률, 3단계는 원자로 외부로 방사능이 퍼질 경우 주변 주민들이 얼마나 피폭될지에 대한 확률을 계산한다. 원전 사고 예방을 위해 원자력 전문가들은 머리를 모았다. 제 교수가 이끄는 MURRG(Multi-Unit Risk Research Group)에서는 기존 3단계 PSA 규제 검증 기술에서 ‘부지 리스크 평가(Site Risk Assessment, SRA)’을 추가해 4단계로 원전 안전성을 높이는 연구를 진행했다. 한국원자력연구원(KAERI)을 비롯한 8개의 연구기관이 만든 MURRG는 국내 유일의 ‘원자력 안전드림팀’이다. ▲ 제무성 원자력공학과 교수의 연구를 통해 중대사고 사례 분석 데이터 및 원전 현장 자료와 결합해 피해 예상 결과를 예측할 수 있다. 원전 내 부품별 모델링으로 앞으로 다가올 사고를 예방하고 미리 제반 기술을 정비할 수 있다. ▲ 제무성 교수는 " MURRG는 한국 유일한 ‘원자력 안전드림팀’"이라며 "앞으로도 방사능 유출을 막기 위해 원자력 연구를 지속적해서 할 예정"이라고 말했다. 제 교수가 제시한 부지 리스크 평가(SRA, Site Risk Assessment)를 통한다면 한 부지 안에 원전은 몇 개까지 안전한지 계산할 수 있음은 물론, 현장에서 바로 리스크 모니터링도 가능해진다. 기존까지는 총체적인 위험성을 계산했다면 MURRG의 연구를 통해 부품별 위험 가능성이 실시간으로 출력돼 사고 발생 시 곧바로 비상 발전기가 가동된다. 원전을 6기 이상 운영 하는 원전을 ‘초대형 원전 단지’라고 부른다. 현재 전 세계 초대형 원전 단지 11개 중 1/3 이상이 우리나라에 있다. 그만큼 방사능 유출에 경각심을 가지고 관심을 가져야 한다. 끝으로 제 교수는 “MURRG의 연구를 통해 한국 원자력 위험성을 낮추는 데 기여하고 싶다”고 말했다 글/ 김가은 기자 kate981212@hanyang.ac.kr 사진/ 박근형 기자 awesome2319@hanyang.ac.kr

2019-02 04 중요기사

[학술][이달의 연구자] 전병훈 교수(자원환경공학과)

하수처리 또는 정수과정에서 생긴 고체 침전물은 슬러지(Sludge)라고도 불린다. 과연 다른 용도가 있을까 의문이 드는 이 슬러지는 ‘바이오가스(Bio-gas)’라 불리는 신재생에너지로 재탄생 한다. 미생물이 고농도 유기물인 하수 슬러지를 분해하면서 메탄을 포함한 가스를 발생시키는 것이다. 그 때문에 미생물 활동을 활발하게 하는 것이 바이오 가스 생산 공정의 핵심. 전병훈 자원환경공학과 교수가 기름 및 지방 성분(fat, oil, grease, FOG)를 이용해 기존 공정보다 바이오가스 생산을 증진하는 방법을 포착했다. FOG를 사용한 혐기병합소화(Anaerobic co-digestion) 공정에 주목 ▲ 전병훈 자원환경공학과 교수가 기존 혐기소화(Anaerobic digestion) 공정에서 기름 및 지방 성분(fat, oil, grease, FOG)를 추가한 혐기병합소화 공정(Anaerobic co-digestion)을 활용해 바이오가스 생산을 증진하는 방법을 연구했다. 하수처리장으로 모인 고체 폐기물 슬러지는 혐기소화(Anaerobic digestion) 공정을 통해 그 양이 줄어든다. 혐기란 말 그대로 공기를 싫어한다는 뜻으로 밀폐된 공간에서 소화된다는 의미다. 혐기 조건에서 미생물 분해 작용을 통해 하수 슬러지의 양이 줄어듦과 동시에 메탄을 함유한 기체가 발생한다. 이 기체혼합물이 전기를 만드는 연료가 된다. 하지만 들이는 에너지에 비해 우리가 얻는 에너지양은 미비하다. 혐기소화 공정으로는 공정에 투입되는 에너지 중 20~40%밖에 회수하지 못 한다. 생산 효율을 높이는 방법은 없을까? 최근 기존 혐기소화 공정에 지방(Fat), 식용유(oil), 기름(grease)를 포함하고 있는 FOG를 투입해 미생물의 활동을 활발하게 하는 혐기병합소화 공정(Anaerobic co-digestion)이 주목 받고 있다. 혐기병합소화 공정은 높은 농도의 지질학적 폐기물인 FOG를 연소시킴으로써 에너지를 발생시킨다. FOG는 고밀도 탄소를 포함하고 있어 혐기소화 과정에 더해졌을 때 메탄의 양을 매우 증가시킬 수 있다. 분해하려는 슬러지 양의 10~30%에 해당하는 FOG만 넣어도 기존 혐기소화 공정보다 80% 높은 바이오 가스 생산이 가능하다. 그러나 완벽해 보이는 혐기병합소화 공정에도 단점은 존재했다. ▲ 하수처리장에서 슬러지가 모이면 미생물에 의해 분해된다. 이는 메탄을 만들어내는데, 메탄은 다시 용해되어 재생 가능하고 친환경적인 에너지인 에너지를 생성할 수 있다. 이 과정을 혐기성 소화라고 한다. 단점 극복 위해 FOG 샅샅이 분석하다 FOG에 함유된 긴사슬지방산(LCFA, Long chain fatty acids)이 공정을 억제해 슬러지 유동화, 세척 및 폐기물 형성을 방해한다. 전 교수는 이를 해결하기 위해 FOG의 특성부터 신속한 분해를 위한 여러 전처리 기법에 대해 분석했다. 실제 하수처리장 사례를 가지고 하수슬러지-FOG 병합 소화의 최적 반응 조건부터 하수처리장 공정도까지 조사했다. 전 교수는 “슬러지와 FOG의 공동 소자가 바이오 메탄 생산을 크게 증가시켰으며, FOG 로딩, 혼합 강도, 원자로 구성 및 운용 조건 등의 조건에 의해 바이오메탄 생산이 개선됐다”고 말했다. 대체할 수 없는 신재생에너지, 바이오가스 전 교수는 “화석연료의 지속적인 사용으로 지구 환경오염 문제가 심각하다”며 “그에 따라 신재생에너지의 중요성이 대두되고 있다”고 말했다. 또 “전기는 신재생에너지 하면 쉽게 떠오르는 태양열과 풍력 에너지로 확보할 수 있지만, 이들은 그 밖에 다른 용도로는 쓰기가 어렵다”며 “그 빈 자리를 바이오가스가 채울 수 있다”고 밝혔다. “화석연료 고갈로 신재생에너지만 쓸 수 있게 되면, 유일하게 수송 연료나 도시가스로 활용할 수 있는 바이오가스 연구는 그 가치는 더 올라갈 것입니다.” ▲ 전병훈 자원환경공학과 교수(아랫줄 왼 쪽에서 세번째)는 “화석연료 고갈로 신재생에너지만 쓸 수 있게 되면, 유일하게 수송 연료나 도시가스로 활용할 수 있는 바이오가스 연구의 중요성이 높아질 것”이라고 말했다. 글/ 김가은 기자 kate981212@hanyang.ac.kr 사진/ 강초현 기자 guschrkd@hanyang.ac.kr

2018-12 05 중요기사

[학술][우수R&D] 김보영 교수 (경영학부) (1)

터치 한 번으로 모든 것을 해결하는 시대다. 모바일을 통한 소비까지 가세하면서 유통 업체 간 옴니채널(Omni-channel)을 선점하기 위한 마케팅 경쟁이 치열하다. ‘옴니채널’이란 온라인, 오프라인 할 것 없이 소비자가 언제 어디서든 제품을 구매할 수 있도록 한 쇼핑체계다. 한양대 경영학과 김보영 지속가능경제연구소(Korea Institute of Sustanable Economy, 이하 KISE) 소장이 빅데이터를 활용해 소비자들의 구매 행태 변화를 좇았다. 소비재 식품 유통 사슬 연구에서 빅데이터에 이르기까지 지난 2010년 설립된 한양대 한국 지속가능경제연구소 KISE는 설립 당시 ‘식품 유통’ 연구 분야에 운영 초점을 맞췄다. '식품 안전', '식량 안보', '한국 소비재 식품 브랜드의 글로벌 브랜딩 전략'을 준비한 것이다. 한국-중국 농식품유통이 활발해질수록 식품 안전체계에 대한 관심은 높아졌고, 자연스레 김 교수는 식품 유통 공급 사슬에 주목했다. 식품 유통 시스템, 식량안보, 식품안전 이슈에 다각도로 접근하기 위해 지난 2013년에 건국대 기후변화 연구소와 연합해 식량안보 위기관리 체제에 대해 연구했다. 또한 식품 리스크 커뮤니케이션에 대한 이해관계자의 인식을 식약청과 공동으로 분석해 차별화된 전략을 도출했다. 그러던 중 4차 산업혁명으로 유통 시스템이 뒤집혔다. 소비자가 온라인과 오프라인을 자유롭게 넘나들며 제품을 구매할 수 있게 된 것이다. 이를 계기로 지난 2015년부터 KISE는 소비재 식품유통 분야에서 나아가 유통 산업 전반을 다루기 시작했다. 달라진 소비자의 구매 형태 데이터를 수집해 유통업체들이 이를 토대로 어떻게 발전해야 하는지를 연구했다. 이러한 모델링은 한·중·일에 그치지 않고, 미국과 유럽 소비자 사례까지 다루며 진행됐다. 일본 무인양품(MUJI)사의 소비자 빅데이터 연구도 그 예 중 하나다. ▲ 김보영 지속가능경제연구소(KISE) 소장은 연구소가 설립된 2010년부터 식품유통과 글로벌 마케팅 전략에 초점을 맞춰 국내 기업이 경쟁력을 지닐 수 있도록 많은 연구를 진행했다. KISE, 빅데이터를 활용한 6가지의 연구 과제 선정 지난 3월 26일, KISE는 일본 히토츠바시 대학교, 후쿠오카 대학교와 함께 옴니 채널과 빅데이터를 다루는 글로벌 포럼을 개최했다. 포럼을 통해 유통 산업 빅데이터를 활용한 6가지 연구과제를 선정했다. ▲옴니 소비자 집단 세분화(Omni consumer segmentation) ▲옴니 소비자 쇼핑 경로 분석(Customer engagement analysis) ▲고객 참여 분석(Association rule mining) ▲글로벌 브랜드 경험 연구(Global Brand experience study) ▲유통 브랜드 가치 모델링 (Building retail attribute vs Retain brand equity model) ▲ 소비자의 SNS 행태가 브랜드가치에 미치는 영향 분석(SNS effects on consumer brand preference)을 연구 주제로 삼았다. 김 교수는 6가지 연구 과제 중 이미 2개를 마친 상태다. ▲ 김보영 교수는 향후 4차 산업혁명이 한국에 가져올 유통 시스템과 소비자들의 변화를 빅데이터를 통해 예측하고 연구해야 한다고 했다. 한국 유통 기업이 글로벌 경쟁력을 갖추는 그날까지 김 교수는 앞으로 KISE의 활동에 주목해야 하는 이유에 대해 “국내 산업체 빅데이터 접근이 까다로워 지금까지 해외 기업 데이터 분석만 다뤘던 반면 KISE의 목표는 국내 기업 빅 데이터를 통해 유통, 마케팅 및 글로벌 브랜드 전략으로 글로벌 경쟁력을 강화하는 것”이라고 말했다. KISE는 2010년부터 사회과학인용색인 (SSCI)급 및 한국학술지인용색인 (KCI)급 논문을 수십 편 발표한 바 있다. “한국연구재단 Social Science Korea (SSK) 지원사업을 통해 현재 KISE의 연구과제를 진행할 수 있었다” 며 “지원이 종료되는 2020년 후에도 지속가능한 연구를 위해 KISE는 국책사업에도 도전할 예정"이라는 목표를 밝혔다. 글/ 김가은 기자 kate981212@hanyang.ac.kr 사진/ 박근형 기자 awesome2319@hanyang.ac.kr

2018-09 03 중요기사

[학술][이달의 연구자] 심지원 교수(생명과학과)

면역은 외부에서 인체에 침입한 유해물질을 무찌르는 전투다. 침입자가 쳐들어오면 체내의 면역세포들은 온 힘을 다해 막아낸다. 특히 파킨슨병, 알츠하이머병, 헌팅턴병을 포함하는 신경퇴화 질병(neuro degeneration)에서는 면역세포 연구가 핵심적이다. 침입자를 방어하는 인간의 면역체계는 초파리의 면역체계와 유사하다. 심지원 교수(생명과학과) 연구팀은 초파리를 통해 대기 중 산소‧이산화탄소의 농도가 면역세포의 분화를 조절한다는 사실을 발견했다. 이번 심 교수팀의 연구결과는 자연과학 분야 권위의 학술지인 네이처 커뮤니케이션즈(Nature Communications)에 게재됐다. 인간과 유전자가 비슷한 생명체는 무엇이 있을까? 침팬지, 고양이, 쥐를 비롯한 많은 동물이 머릿속을 스쳐 지나간다. 여기 생각지도 못한 후보가 있다. 바로 초파리다. 놀랍게도 초파리의 유전구조는 인간과 70~80% 비슷하며 인간이 가진 질병 중 대부분을 가지고 있다. 여기서 심 교수가 주목한 부분은 초파리의 면역체계다. 심 교수의 곤충에 대한 관심은 박사과정 논문 주제였던 선형동물 예쁜꼬마선충으로부터 시작됐다. ▲심지원 교수(생명과학과) 연구팀은 산소‧이산화탄소 분압에 대한 정보가 신경세포 시냅스를 통해 혈액줄기세포의 분화와 면역체계를 조절한다는 것을 확인했다. 심 교수는 UCLA 박사 과정에서 세포 하나하나에 집중하는 동료들을 보며 의문을 품었다. “개별 세포를 관찰하기보다 세포가 어떻게 외부 환경의 변화에 조직적으로 반응해 분화하는지 궁금했어요.” 이후 심 교수는 인간과 유사한 유전구조를 가지고 있는 초파리를 연구대상으로 택해 시각이나 후각 같은 감각기관에 이상이 있는 돌연변이 초파리를 관찰하기 시작했다. 그러던 중 이산화탄소(CO2) 감지 신경이 망가지면 혈액이 비정상적으로 분화하는 것을 발견했다. ▲심지원 교수(생명과학과) 연구팀은 초파리를 이용해 대기 중 산소‧이산화탄소의 농도가 면역세포의 분화를 조절한다는 사실을 발견했다. 사진은 실험에 사용된 초파리가 담긴 통이다. 심 교수팀은 더 자세한 관찰을 위해 초파리 유충을 이산화탄소에 노출시킨 뒤, 세포 분화 과정을 볼 수 있는 스크리닝(screening) 방법으로 분석했다. 초파리 유충의 호흡이 기준치 이하로 떨어지자 스트레스에 관한 정보가 신경세포 시냅스(synapse)를 통해 뇌로 전달됐고, 정보를 전달받은 뇌 신경에서는 이산화탄소와 산소 균형을 맞추기 위해서 면역세포를 움직였다. 지금까지 '뇌 신경과 면역세포가 직접적인 영향을 주고받을 수 있을 것이다'라는 가설만 존재했다면, 이번 연구를 통해 뇌 신경과 면역세포 사이에 직접적인 상호작용이 이루어진다는 것이 밝혀졌다. 심 교수는 “기존에 뇌 신경-면역세포 간의 가설이 많이 존재했었는데 그 상호작용을 우리 학교에서 증명해내 기쁘다"며 "이번 연구를 통해 생명체 내의 다양한 기관의 상호작용 또한 밝힐 수 있을 것으로 예상한다”고 말했다. 이번 심 교수 팀의 연구결과(논문명 : Systemic control of immune cell development by integrated carbon dioxide and hypoxia chemosensation in Drosophila)는 자연과학분야 권위의 학술지인 네이처 커뮤니케이션즈에 게재됐다 ▲ 심지원 교수(생명과학과) 연구팀의 모습 글/ 김가은 기자 kimgaeun98@hanyang.ac.kr 사진/ 강초현 기자 guschrkd@hanyang.ac.kr