전체 8건
뉴스 리스트
게시판 리스트 컨텐츠
2019-08 01

[학술][우수 R&D] 성원모 교수, AI 기술 활용한 비전통유·가스 정(井) 생산성 향상

비전통(unconventional) 자원이란 기존 화석연료 채굴 방법이 아닌 새로운 기술로 채굴되는 자원을 말한다. 성원모 자원환경공학과 교수는 뉴멕시코 광산공과대학교(New Mexico Institute of Mining and Technology)와 협업해 ‘비전통유·가스 정(井) 기술’(시추를 통해 우물로 기름과 가스를 추출하는 기술)에 인공지능(AI)을 접목시키는 연구를 진행 중이다. 대표적인 비전통 자원인 셰일 가스 추출에 힘쓰고 있는 성 교수를 만나 직접 이야기를 들었다. ▲성원모 자원환경공학과 교수는 AI 기술을 접목해 비전통유·가스 정(井) 생산성을 향상시키는 연구를 하고 있다. 셰일 가스의 원료인 셰일은 진흙처럼 작은 입자로 이뤄진 암석으로, 케로젠(동식물의 사체가 원유로 변하기 전 단계)을 보유하고 있다. 유기물인 케로젠이 셰일 가스를 만드는 주된 역할을 한다. 성 교수는 비전통유·가스 정(井) 기술을 통해 셰일 가스를 추출할 수 있다고 말했다. “비전통유·가스 정(井) 기술 원리는 간단합니다. 땅에서 수직으로 2~3km를 파고 다시 셰일이 있는 곳에 수평으로 3km를 팝니다. 다음엔 셰일 주변에 균열을 내죠. 그러면 셰일에 흡착된 가스가 탈착되면서 균열을 통해 유〮가스 정(井)으로 나오게 됩니다.” ▲성원모 자원환경공학과 교수 연구실에 있는 셰일 표본이다. 셰일은 진흙처럼 작은 입자로 이뤄진 암석으로, 케로젠(동식물의 사체가 원유로 변하기 전 단계)을 보유하고 있다. ▲ 비전통유·가스 정(井) 기술과 전통 유〮가스 정(井) 기술 원리를 알려주는 그림이다. (성원모 자원환경공학과 교수 제공) 성 교수는 이 비전통유·가스정(井)의 생산성을 높이기 위해 AI 기술을 더했다. 성 교수는 “시추 시 땅속에 있는 암석 심도가 모두 다르기 때문에 목적지에 도달하기 힘들다”고 밝혔다. “암석이 무를 수도 있고 단단할 수도 있기 때문에 우물이 수직으로 가지 않고 엉뚱한 곳에 도달할 수 있어요. AI 기술을 활용한다면 암석의 종류, 심도, 가스를 모두 파악해 정확한 목적지까지 시추할 수 있습니다.” 더불어 시추에 걸리는 시간과 생산량도 미리 알 수 있어 효율성이 높아진다. 성 교수는 AI 기술을 통해 비전통유·가스정(井) 추출 비용이 몇천억 이상 줄어든다고 귀띔했다. 이번 연구는 지난 5월에 시작해 3년간 진행된다. 성 교수는 이미 미국을 한 차례 방문해 연구 시작을 알렸다. 협업 중인 뉴멕시코 광산공과대학교는 셰일 가스가 있는 현장과 셰일 가스 정(井)을 보유한 회사를 섭외했다. ▲성원모 자원환경공학과 교수는 “비전통유·가스 정(井)에 접목하는 AI 기술 개발을 활발히 해서 미래 가스 자원을 확보하는 데 이바지하고 싶다”고 밝혔다. 본래 셰일 가스는 추출 불가능한 천연가스였으나 비전통유·가스 정(井) 기술이 개발되면서 2000년대부터 떠오르는 천연자원이 됐다. 셰일은 지층에 고르게 퍼져있기 때문에 가스 매장층(Gas Reservoir) 찾기가 관건인 전통 유〮가스 정(井) 기술에 비해 추출이 쉽고, 시추 1000m당 1000억 원 이상이 드는 해상 가스보다 비용이 저렴하기 때문이다. 성 교수는 “2050년쯤에는 가스 에너지 소비 비중이 높아질 것”이라고 말했다. “비전통유·가스정(井)에 접목하는 AI 기술 개발 및 참여를 활발히 해서 미래 가스 자원을 확보하는 데 힘이 되고 싶습니다.” 글/ 옥유경 기자 halo1003@hanyang.ac.kr 사진/ 이현선 기자 qserakr@hanyang.ac.kr

2019-07 15

[학술][우수 R&D] 김태곤·박진구 교수, 한국-벨기에 글로벌 인재양성 사업 담당해

김태곤 스마트융합공학부 교수(실무 담당)가 박진구 재료화학공학과 교수(총괄 책임)와 함께 ‘한국-벨기에 미래 혁신성장을 위한 글로벌 전문가 양성 1차’ 사업을 맡았다. 이 프로그램은 한국산업기술진흥원에서 지원하는 혁신성장 글로벌 인재 양성 사업이다. 그 중 한양대학교는 지능형 반도체, 3D 프린팅, 로봇 분야에 선정됐다. 지능형 반도체 분야 파견 학생들은 벨기에에 있는 반도체 연구소 아이멕(IMEC), 3D 프린팅과 로봇 분야 파견 학생들은 루벤 가톨릭대학교(KU Leuven)에서 인턴십 및 연구를 진행할 수 있다. ▲ 김태곤 스마트융합공학부 교수가‘한국-벨기에 미래 혁신성장을 위한 글로벌 전문가 양성 1차’ 사업에 대해 설명하고 있다. 김 교수는 이번 사업을 적극 추진했다. 이미 아이멕과 인연이 있기 때문이다. “아이멕에서 10년 넘게 근무했어요. 아이멕은 세계적인 반도체 종합 연구소입니다. 인프라도 좋고 배울 게 많은 곳이기 때문에 이번 해외 파견이 학생들에게는 가치 있는 경험이 될 겁니다.” ▲‘한국-벨기에 미래 혁신성장을 위한 글로벌 전문가 양성 1차’ 사업 모집 공고 포스터. 김 교수는 참여 인원이 아직은 채워지지 않아 여전히 모집 중이라고 밝혔다. (김태곤 교수 제공) 연구 기간은 최소 6개월, 최대 1년으로 연구 주제마다 상이하다. 참여 인원으로 석사, 박사 과정의 대학원생 26명을 뽑는다. 김 교수는 “올해 파견 가는 13명을 모집하는 중”이라고 밝혔다. “학생이 다 모이지 않아서 기한은 인원이 찰 때까지예요. 내년에 파견 가는 13명의 학생은 오는 10월에 모집 예정입니다.” 김 교수는 “지원 요건과 맞지 않더라도 해당 역량을 쌓고 싶은 학생이 있다면 상담 후 지원 가능하다”고 전했다. 이번 사업 지원금은 상당하다. 항공료, 월급 등을 지원해 벨기에에서 생활하는 데 무리가 없을 정도라고. 또한 26명의 파견 학생 중 2명의 학생은 면접을 통해 원자 현미경과 나노계측기기를 개발하는 ㈜파크시스템스에 취직할 수 있다. 김 교수는 사업 참여 학생들을 “㈜파크시스템스와 같은 중견기업의 중간 관리자로 양성하고 싶다”고 말했다. 반도체, 3D프린팅, 로봇과 같은 차세대 기술은 자율적인 업무 환경이 조성된 강소(强小)기업에서 연구할 시 지속적으로 발전할 수 있기 때문이다. 김 교수는 이번 사업을 성공적으로 마쳐 ‘한국-벨기에 미래 혁신성장을 위한 글로벌 전문가 양성 2차’ 사업도 추진하고 싶다는 의사를 밝혔다. “2차 사업 때는 학생들이 취업할 수 있는 기업을 더 많이 유치하고 싶어요. 그게 본 사업이 이뤄내야 할 목표라고 생각합니다.” 글/ 옥유경 기자 halo1003@hanyang.ac.kr 사진/ 김주은 기자 coram0deo@hanyang.ac.kr

2019-07 02

[학술][우수 R&D] 송시몬 교수, 학생들을 위한 해외파견 연구지원사업 박차

송시몬 공과대학 기계공학부 교수는 올해 4월부터 혁신성장 글로벌인재양성 사업인 ‘로봇-엔지니어링 혁신설계 글로벌인재양성사업단’을 맡았다. 이 사업의 시작은 산업통상자원부에서 글로벌인재양성사업단을 모집하면서부터다. 이를 위해 송 교수는 한양대 대학원 융합기계공학과, 원자력공학과, 나노유기공학과 및 NVH Korea로 구성된 컨소시엄으로 사업단을 꾸렸다. 송 교수는 글로벌인재양성사업단의 여러 모집 분야 중 로봇과 엔지니어링 분야에 선정됐다. 글로벌인재양성 사업에 참여하는 26명의 기계공학부 석사, 박사과정 학생들 및 박사 후 연구원들은 해당 분야에서 매사추세츠공과대학교(MIT), 스탠퍼드대학교, 하버드대학교 등 14개의 우수 해외파견기관과 공동 연구를 할 수 있다. ▲송시몬 기계공학부 교수가 담당하는 ‘로봇-엔지니어링 혁신설계 글로벌인재양성사업단’은 엔지니어링 보강과 로봇 보강 연구 분야를 통해 인재 양성, 기술 확보와 일자리 창출에 기여한다. (송시몬 교수 제공) 송 교수는 학생마다 연구 기간과 주제가 다르다고 설명했다. “자신의 연구실에서 하던 연구와 유사한 연구를 진행하는 해외 기관에서 각각 6개월에서 1년간 같이 일하게 됩니다.” 로봇 분야는 소프트 로봇, 재활 로봇, 모듈 로봇, 웨어러블 디바이스, 로봇 동력기술을 연구하고, 엔지니어링 분야에서는 저가형 고감도 사물인터넷(IoT) 센서 기술과 인공지능(AI), 빅데이터 융합 엔지니어링 실시간 모니터링 기술을 연구한다. 산업통상자원부는 학생들의 원활한 연구를 위해 충분한 지원금을 제공한다. 송 교수는 “사업에 선정될 수 있도록 이수재 산학협력단장님이 적극 도왔다”며 “감사하다”고 밝혔다. ▲이번 사업을 통해 학생들의 연구에 대한 열정과 자세가 바뀌길 바란다는 송시몬 교수. “사업이 끝나는 2020년 이후에는 연구에 대한 학생들의 열정과 자세가 바뀌었으면 좋겠어요.” 학생들에 대한 송 교수의 애정은 올곧다. 송 교수는 이번 사업을 통해 학생들이 많이 배우고 성장하기 바란다. 종종 학생들과 해외 학술대회로 외국 대학에 방문할 때 주변 대학 연구실에 들르죠. 한양대학교보다 인프라는 좋지 않지만 세계적인 연구를 진행하고 있습니다. 뛰어난 논문은 연구 환경이 우수하다고 해서 나오는 게 아닙니다. 한양대학교 연구 실력은 이미 세계적으로 인정받습니다. 학생들이 연구 자체도 중요하지만 이에 더해 연구에 대한 해외기관의 태도와 자세, 그 외 좋은 점들을 배워왔으면 좋겠습니다.” 글/ 옥유경 기자 halo1003@hanyang.ac.kr 사진/ 이현선 기자 qserakr@hanyang.ac.kr

2019-06 25

[학술][우수 R&D] 이찬길 교수, IoT 기술 활용 수도원격검침안테나 개발

사물인터넷(IoT)은 사람, 사물, 데이터 등이 인터넷으로 연결돼 정보가 수집 및 활용되는 초연결 기술이다. IoT 기술은 휴대용 기기뿐 아니라 수도, 방재, 교통, 가스 등 공공 서비스 시설에서도 찾아볼 수 있다. 이찬길 ERICA 캠퍼스 전자공학부 교수와 최재훈 융합전자공학부 교수는 IoT를 사용하는 데 저전력 광역 통신 기술(LPWA, Low-Power Wide-Area)로 수도 원격 검침 안테나를 개발 중이다. ▲ 이찬길 전자공학부 교수가 사물인터넷(IoT)을 사용하는 데 필요한 저전력 광역 통신 기술 (LPWA, Low-Power Wide-Area)에 대해 설명하고 있다. 이 교수는 한국형 저전력 광역 안테나를 개발하고 있다. 외국에는 이미 공공망용 사물인터넷(NB-IoT), 로라(LORA, Long Range), 시그폭스(SigFox), 와이썬(Wi-Sun) 등이 있다. 이 교수가 개발중인 통신 안테나는 적은 전력과 비용으로 대규모 단말기에 접속한다. 전파가 사과 모양으로 퍼졌던 기존 안테나와 다르게 원뿔 모양으로 퍼지면서 더 많은 수도를 원격 검침할 수 있게 제작 중이다. 이 안테나는 각 수도 미터계 위치, 시간, 온도, 습도, 압력 등 중요 정보 수집은 물론 고장 유무도 파악할 수 있다. 이 교수는 “저전력 광역 안테나는 안테나를 지상에 세우는 기존 방식과 달리 수도 계량기 커버 하단인 땅속에 부착한다”고 말했다. 도시 미관을 해치지 않으며 안테나 파손 위험도 줄어드는 것이다. ▲ 이찬길 전자공학부 교수가 개발 중인 저전력 광역 안테나는 수도계량기 커버 하단에 부착하는 방식이다. 도시 미관을 해치지 않는 것은 물론 안테나 파손 위험도 줄어드는 방법이다. (이찬길 교수 제공) 이번 연구는 올해 4월부터 시작해 1년 동안 진행되는 프로젝트다. 이 교수가 있는 디지털통신시스템 연구실(Digital Communication Systems Lab.)에서는 이번 IoT 기술과 서브 미터급(해상도 1m 이하) 정밀도를 갖는 실시간 위치추적시스템(RTLS, Real-Time Location System) 구현 기술을 중점적으로 연구하고 있다. ▲ 이찬길 전자공학부 교수는 디지털통신시스템 연구실(Digital Communication Systems Lab.)에서 사물인터넷(IoT)와 실시간 위치추적시스템(RTLS, Real-Time Location System) 기술을 적용한 연구를 수행 중이다. (이찬길 교수 제공) IoT 기술은 산업구조를 변화시키며 사람들의 삶과 업무에 큰 영향을 미치고 있다. 이 교수는 앞으로도 IoT 기술 개발과 실용적인 연구에 임할 것이라고 밝혔다. 끝으로 이 교수는 “현재 연구 중인 안테나를 외국 저전력 광역 기술과 경쟁해도 뒤지지 않는 성능으로 향상시켜 외국에도 수출할 수 있길 바란다”고 전했다. 글/ 옥유경 기자 halo1003@hanyang.ac.kr 사진/ 이현선 기자 qserakr@hanyang.ac.kr

2019-05 14

[학술][이달의 연구자] 방진호 교수, 은 나노입자로 태양전지를 구동하다

방진호 ERICA캠퍼스 과학기술융합대학 화학분자공학과 교수가 은 나노입자를 통해 태양전지를 구동하는 법을 발견했다. 방 교수는 지난 2016년도에 금 나노입자를 태양전지에 적용한 바 있다. 하지만 은은 금보다 불안정하고 전자 수명(excited state lifetime)이 짧기 때문에 태양전지 구동이 어렵다. 방 교수는 어떻게 은으로 태양전지를 구현할 수 있었을까? ▲ 방진호 화학분자공학과 교수는 광전환 효율(태양에너지를 전기 에너지로 바꾸는 효율)이 낮아 실험 소재로 잘 사용되지 않는 은을 실험에 사용해 태양전지를 구동시켰다. 방 교수는 “불안정한 은 나노입자를 보호하면 된다”며 간단한 해결법을 내놓았다. “pH(용액 농도)를 조절해서 리간드(ligand)를 은 나노입자 주위에 둘러싸도록 합니다. 그러면 보호막이 형성돼 은 나노입자의 안정성을 높일 수 있죠.” ▲은 나노입자의 구현 모식도 및 성능 비교 그림이다. (한국연구재단 제공) ▲방진호 화학분자공학과 교수는 “pH(용액 농도)를 조절해 보호막을 형성하면 은 나노입자의 안정성을 높일 수 있다”고 밝혔다. 방 교수의 이번 연구는 광전환 효율(태양에너지를 전기 에너지로 바꾸는 효율)이 낮아 실험 소재로 잘 사용되지 않는 은을 사용했다는 데에 의의가 있다. “새로운 소재를 이용한 연구는 항상 필요합니다. 효율이 낮더라도 다양한 소재로 연구하다 보면 실험의 발전 가능성이 커지기 때문이죠.” 그동안 은 나노입자를 이용한 연구사례는 거의 없었다. “작동원리, 기본 시스템조차 잘 알려져 있지 않아서 기초 연구도 진행해야 했습니다.” 이로 인해 방 교수 연구팀은 은 나노입자 연구의 선두주자 격이 됐다. 위 연구 성과를 담은 논문은 지난 4월 3일, 미국화학회가 발행하는 재료 분야 국제 학술지 ACS 어플라이드 머터리얼즈 앤 인터페이스(ACS Applied Materials&Interfaces) 표지에 게재됐다. ▲ 방진호 화학분자공학과 교수와 연구에 참여한 무하마드 아와이스(Awais) 나노센서연구소 교수가 암실 안에서 태양전지의 성능을 실험하고 있다. 연구는 아직 진행 중이다. “기존 태양전지 소재에는 독성이 많습니다. 실내조명으로 쓰인다면 몸에 매우 해롭죠.” 금이나 은은 장신구로도 쓰일 만큼 인체에 무해하지만 효율이 낮고 고가다. 방 교수는 “연구를 통해 효율을 더 높이고 양을 조절해서 가격을 낮추는 방법이 있다”고 설명했다. 그는 연구 성과가 상용화 단계로 이어지길 바란다고 전했다. “대학 연구가 상용화 단계까지 가는 사례는 드물어요. 힘든 과정이지만 인체에 무해하고 유익한 기술이니 널리 쓰일 수 있도록 노력하겠습니다.” 글/ 옥유경 기자 halo1003@hanyang.ac.kr 사진/ 이현선 기자 qserakr@hanyang.ac.kr

2018-12 31

[학술][이달의 연구자] 최재훈 교수(생명과학과)

동맥경화는 혈관에 지질(동식물 조직에 있는 지방)이 쌓여 동맥이 좁아져 심근경색, 뇌경색과 같은 병을 유발하는 만성 염증성 질환이다. 최재훈 교수(생명과학과)는 동맥경화 병변으로 인해 나타나는 대식세포의 특성과 분리 방법을 지난 2012년부터 연구했다. 7년에 걸쳐 진행된 최 교수의 연구 논문 ‘Transcriptome analysis reveals nonfoamy rather than foamy plaque macrophages are proinflammatory in atherosclerotic murine models’는 심혈관 분야의 세계적 권위지 ‘서큘레이션 리서치(Circulation Research)’ 2018년 10월호에 게재됐다. ▲최재훈 교수(생명과학과) 연구팀은 이번 연구를 통해 보통의 대식세포는 염증을 유발하는 반면, 혈관 내 지질을 섭취한 대식세포는 더 활발하게 식작용을 일으켜 염증 유발을 완화한다는 사실을 밝혀냈다. 동맥경화의 새로운 치료방안 지속해서 고지혈증(혈액 중 지방량이 많은 상태)을 앓아온 환자들은 대부분 동맥경화까지 얻게 된다. 고지혈증 환자의 혈관에 지질이 쌓여 염증이 생기면 면역세포인 대식세포는 손상된 조직을 처리하기 위해 혈관으로 모여든다. 처리 과정에서 지질을 삼킨 대식세포는 몸집이 커져 포말세포(Foamy cell)가 된다. 그동안 동맥경화는 포말세포가 염증 반응을 촉진한다고 알려졌고, 대부분의 연구는 포말세포형성을 줄이는 데 초점이 맞춰져 있었다. “동맥경화증을 앓는 환자 혈관에 포말세포가 많이 발견되니까 포말세포형성을 억제해야 병이 낫는다고 생각한 거죠.” 그의 이번 연구 결과는 기존의 동맥경화증 연구 방향을 뒤집었다. 최 교수 연구팀은 포말세포 형성 후에는 오히려 혈관 내 염증반응이 줄어들고, 혈관에 쌓인 지질을 배출하는 능력이 증가한다는 것을 발견했다. 포말세포가 아닌 이전 단계의 대식세포(Nonfoamy cell)에서 염증반응을 억제해야 한다는 것이다. 전문 인력과 인프라가 확충됐으면 최 교수팀은 개별적인 세포 개체의 유전자 발현을 분석할 수 있는 ‘단일 세포 RNA 시퀀싱’(Single cell RNA sequencing) 기술을 사용하기 위해 2017년 1월부터 약 1년간 미국 워싱턴 대학교(Washington University in Saint Louis)에서 연구를 진행했다. 아직 한국에서는 위 기술을 다루는 전문가와 기술이 부족했기 때문이다. “워싱턴 대학교를 비롯한 미국 유수 대학들이 계속 세계적인 바이오 연구 결과를 낼 수 있는 것은, 최첨단 연구 장비와 이를 관리할 수 있는 뛰어난 전문인력들이 확보됐기 때문입니다.” ▲최재훈 교수(생명과학과)는 생명과학에서 중요한 것은 살아있는 생체 안에서 일어나는 현상이 정확하게 분석되는 것이라며 오래 걸리더라도 의미 있는 연구를 하는 것이 중요하다고 덧붙였다. 최 교수의 연구 철학 최 교수는 수의과학대학교에서 학부와 대학원 시절을 보내면서 동물과 사람의 질환에 호기심을 가졌다. “생체 안에서 일어나는 현상을 발견하고 분석하고 싶었어요.” 최 교수는 현재 노령화 시기에 가장 많이 발생하는 심장 판막질환과 그 외 다양한 염증성 질환을 연구하고 있다. 끝으로 최 교수는 한양대학교 학생들이 논문을 한 편 쓰더라도 유용하고 의미 있는 내용을 담길 권했다. 생체 질환을 연구하면서, 더욱 많은 질환 극복에 도움이 되고 싶은 그의 연구 철학이 담겨있는 말이다. “시간이 걸리더라도 개의치 말고 꾸준히 하세요. 다른 연구자들이 많이 인용할 수 있는 논문을 작성하고, 과학사회에 영향력 있는 연구를 했으면 좋겠습니다.” 글/ 옥유경 기자 halo1003@hanyang.ac.kr 사진/ 이진명 기자 rha925@hanyang.ac.kr

2018-10 08

[학술][이달의 연구자] 박원일 교수(신소재공학부) (1)

리튬이온 배터리는 우리 주변 곳곳에서 쓰인다. 핸드폰, 노트북, 전기 자동차, 에어팟(AirPods) 등 무선(wireless)제품에는 리튬이온 배터리가 빠질 수 없다. 박원일 교수(신소재공학부)는 바로 이 리튬이온 배터리에 집중했다. 보통 핸드폰을 100% 충전시키기 위해서는 1시간에서 2시간이 소요된다. 박 교수는 이를 단 3분으로 줄였다. 원리가 무엇일까? ▲ 박원일 교수(신소재공학부)가 이번 연구의 핵심인 리튬이온 배터리의 충전 원리에 대해 설명하고 있다. 리튬이온 배터리에는 내부에는 양극, 음극, 액체 전해질이 있다. 배터리가 충전 되려면 리튬이온이 액체 전해질을 타고 음극에서 양극으로 이동해야 한다. 현재 리튬이온 배터리의 음극을 이루는 활물질(전지가 방전할 때 화학적으로 반응하여 전기에너지를 생산하는 물질)은 흑연이다. 차세대 대체물질로는 실리콘이 대두된다. 에너지 밀도가 흑연보다 10배 이상 크기 때문이다. 하지만 박 교수는 실리콘 대신 규화니켈을 사용했다. “문제는 대체물질이 아니라 ‘부반응(solid electrolyte interphase)층’ 입니다. 음극과 전해질 사이의 계면(기체, 액체, 고체 중 2개의 상이 접할 때 상과 상 사이에 형성되는 경계면)에서 고체로 이루어진 부반응 층을 해결하는 게 관건이죠.” 리튬이온이 부반응 층에 가로막혀 제 기능을 못하기 때문이다. 박 교수는 활물질 안에 전압이 생기도록 하는 방법을 고안했다. 활물질인 규화니켈 밖에는 부반응층이 생겨도 안에는 부반응 층이 생기지 않는다. 이 원리를 이용하면 전류가 통할 수 있다. 박 교수의 이번 논문 ‘Controlling electric potential to inhibit solid-electrolyte interphase formation on nanowire anodes for ultrafast lithium-ion batteries’의 제 1저자이기도 한 장원준(신소재공학 석사과정) 씨는 이 개념을 적용하면 배터리 성능이 좋아지고 충전속도가 빨라진다고 밝혔다. “보통 리튬이온 배터리는 500회 이상 충전하면 성능이 안 좋아져요. 하지만 저희는 3분만에 핸드폰 배터리가 완충되는 조건으로 2000번을 실험했습니다. 성능은 거의 떨어지지 않았어요.” ▲ 연구를 진행한 논문의 저자들이 실험실 기구를 보여주고 있다. (왼쪽에서부터) 장원준(신소재공학 석사과정), 박원일 교수(신소재공학부). 박 교수가 이번 논문과 연구를 통해 강조하고 싶은 건 단연 ‘부반응층 억제’다. 1년 반이라는 연구 기간 동안 부반응 층이 활물질 표면에만 생긴다는 개념을 증명하기 위해 약 1년을 투자했다. 박 교수의 연구는 끝나지 않았다. “부반응 층을 억제하는 개념을 확장해서 전기 화학 셀(electrochemical cell)에 적용하고 싶어요.” 하나의 연구에서 또 다른 연구로 나아가는 박 교수의 행보가 기대된다. 글/ 옥유경 기자 halo1003@hanyang.ac.kr 사진/ 박근형 기자 awesome2319@hanyang.ac.kr

2018-05 08

[학술][우수R&D] 배지현 교수(의류학과)

스마트 폰, 스마트 워치, 스마트 의류. 사람들은 편리하고 효율적인 삶을 위해 새로운 것을 추구한다. 구글은 스마트 옷감을 만드는 ‘프로젝트 자카드’를 통해, 지난해 9월 27일 스마트 재킷을 출시했다. 단순히 옷감을 건드리기만 해도 음악 재생, 전화 통화 같은 기능을 실행할 수 있다. 옷감의 실이 움직임을 인식하는 센서 역할을 하기 때문이다. 올해 시작한 배지현 교수(의류학과)의 연구도 이런 웨어러블(wearable, 입을 수 있는) 센서다. 지난 4일, 배 교수를 사무실에서 만났다. 웨어러블 센서를 연구하다 배지현 교수는 유연성과 전도성을 가진, 생체정보를 감지할 수 있는 직물 센서를 연구한다. 그는 이해를 돕기 위해 한 장갑을 꺼내 들었다. 편직물(뜨개질 한 것처럼 만들어진 천)로 만들어진 평범한 장갑. 하지만 검지와 중지의 일정 부분은 다른 재질로 돼 있다. “원사에 은을 코팅한 거예요. 이 부분만 전기가 통하죠. 전도성 실이기 때문에 실 자체가 센서 역할을 합니다.” 장갑센서는 여러 가지로 활용 가능하다. 수화를 하면 센서가 손가락의 움직임을 파악해 기기에 글자를 입력하는 기술이 그 예다. ▲ 지난 4일 배지현 교수(의류학과)를 그의 사무실에서 만났다. 배 교수가 직접 센서가 달린 장갑을 착용해보이며 웨어러블 센서에 대해 설명하고 있다. 센서는 인장, 압력, 터치, 온도와 같은 외부압력에 대한 정보를 모바일 디바이스와 연결한다. 웨어러블 센서를 착용한 사람은 기기를 통해 자신의 상태를 쉽게 알 수 있다. 특히 건강관리를 위한 웨어러블 센서가 배 교수의 목표다. “파킨슨병을 앓는 환자들은 병이 진행되면서 서행을 합니다. 신발에 센서가 있다면 보폭과 속도를 측정해서 미리 병을 예측할 수 있죠. 움직임을 감지해서 미리 처방을 받을 수 있다면 외부의 도움 없이도 회복이 가능합니다.” 웨어러블 센서는 일반인에게도 적용할 수 있다. 트레이너 없이 혼자 운동을 할 때, 자신의 동작이 잘못되면 알림이 가는 것이다. 고령화 시대로 접어들면서 복지에 대한 문제가 대두되고 있다. 배 교수는 자신이 연구하는 센서가 사회적 약자를 위해 쓰였으면 한다. “자금도 부족하고 건강도 좋지 않은 독거 노인, 사회적 약자분들의 복지에 힘이 됐으면 좋겠어요.” 웨어러블 센서는 개인적인 건강관리가 수시로 가능하다는 장점을 갖고 있기 때문이다. 다만 그가 걱정하는 것은 가격. “센서가 있는 제품도 저렴한 가격으로 판매해야 해요. 평범한 신발이 1만원이라고 가정하면, 센서가 부착된 신발은 1만 2000원 정도여야 하죠.” ▲ (a) 정도성 섬유를 적용하여 제작된 장갑 센서의 모습이다. (b) 손가락의 움직임에 따른 전기 저항값을 나타낸 그래프. 움직임이 클수록 저항값의 변화량이 크다. (c) 수화 동작 감지 시스템을 시연하는 모습. (출처: 배지현 교수) 융합하고 소통하다 배 교수는 지난 3월에 이 연구를 시작했다. 하지만 우리대학에 임용되기 전에도 웨어러블 형태의 소자(장치, 전자 회로 따위의 구성 요소가 되는 낱낱의 부품)를 개발하는 팀에 들었던 적이 있다. “섬유공학을 전공하고 전자회사에서 일했어요. 자연스레 전기, 기계가 관련된 일과 제 분야를 융합해서 보게 됐죠.” 자신과 다른 분야에 있는 사람의 지식을 융합한다면 큰 시너지 효과를 낼 수 있다. 웨어러블 센서도 같은 선상에 있다. 생체정보를 감지하는 기술, 정보를 기기로 옮겨 착용자에게 제공하는 데이터는 전기전자 전공자가 맡는다. 하지만 그 외에 센서로 만드는 실 제작이나 옷의 신축성 및 디자인 고려는 섬유를 공부한 사람이 할 수 있는 분야다. 웨어러블 센서라는 목표에 도달하기 위해서는 서로 다른 분야의 정보를 받아들이고 소통할 준비가 돼 있어야 한다. 섬유로 할 수 있는 모든 것이 연구대상 같이 연구하는 학부생은 2명. “아무래도 의류학과 학생들에게 전자와 ICT쪽은 생소하죠. 대학원에서 전기전자와 관련한 의류 수업도 하지만 관심을 보이는 학생이 적어요.” 연구 진행에 어려움을 겪고 있기 때문에 타대학 교수들과 협력하기도 한다. 현재 연구는 센서의 소재에 집중하고 있다. “자체적으로 전기적 특성을 낼 수 있는 섬유, 전기 방사를 통해서 전도성 고분자를 만드는 연구 그리고 옷을 자주 세탁해도 전도성 고분자를 섬유에 부착할 수 있는 염색공정도 진행 중입니다.” ▲ 배지현 교수(의류학과)의 웨어러블 센서 연구는 아직 초기 단계다. 사회적 약자를 위해 웨어러블 센서를 연구하는 배지현 교수. 연구에 대한 그의 열의는 계속된다. 건축에도 관심이 많다. 섬유를 기반으로 만드는 건축이다. 방탄, 불연(불에 타지 않음) 기능의 직물소재로 지은 건물은 안정성 면에서 우수하다. 또 쉽게 짓고, 쉽게 철거 할 수 있다. 건축재료인 섬유는 바람에 진동하기도 한다. “섬유가 자체적으로 바람에너지를 저장해 전기적인 효율을 낼 수 있습니다.” 섬유라는 자기 기반을 가진 배교수의 열의는 웨어러블 연구와 함께 계속된다. 글/ 옥유경 기자 halo1003@hanyang.ac.kr 사진/ 이진명 기자 rha925@hanyang.ac.kr