전체 40건
뉴스 리스트
게시판 리스트 컨텐츠
2019-06 17

[학술][이달의 연구자] 홍승호 교수, 사이버 물리 시스템을 이용한 제조시스템을 개발하다

공장은 제품을 만들기 위해 24시간 내내 가동한다. 첨단 정보통신기술들의 발달은 혁신적인 변화를 일으키며 사회 전반에 큰 영향을 미치고 있다. 한층 더 높은 수준의 산업 제조 과정과 관리 시스템이 필요해졌다. 공장을 효율적으로 운영하는 방법을 고민한 홍승호 전자공학부 교수는 새로운 산업 제조 기술을 연구 중이다. 홍 교수는 4차 산업 혁명에 걸맞은 공정시스템의 필요성을 언급하며, 개발 중인 사이버물리시스템(CPS, Cyber Physical System)에 대해 설명했다. 최근 몇 년 동안 빠르게 변하는 시장 상황에 고객 수요가 지속적으로 증가하면서, 생산 추세가 대량 주문 제작으로 바뀌고 있다. 학계와 산업계는 제품의 다양성과 빠른 생산 변화에 대비할 수 있는 효과적인 해결책을 고심했다. 현재 대부분의 기계와 시스템은 자동화됐지만, 동시에 생산 시스템은 더욱 복잡해져 적절히 처리해야 하는 문제가 발생하고 있다. ▲ 홍승호 전자공학부 교수의 ‘A data mining-driven incentive-based demand response scheme for a virtual power plant’ 논문은 IEEE(Institute of Electrical and Electronics Engineers, 미국전기전자공학회) SCI등재 학술지 <트랜잭션 온 인더스트리 애플리케이션스 및 인더스트리 애플리케이션스 매거진>(Transactions on Industry Applications and Industry Applications Magazine)에 게재됐다. 홍 교수는 현재 국제표준화기구(IEC) 한국 대표로 참여하고 있다. 홍승호 교수가 연구하는 사이버물리시스템(이하 CPS)은 이러한 문제를 해결해 한 층 더 효율적인 생산 과정을 실현할 수 있다. 물리적 사물을 컴퓨터 내 정보를 통해 동일 가상 모델로 구현해 디지털 쌍둥이(디지털 트윈)를 만든다. 움직이는 간격과 행동 반격 등이 모두 같은 기계들은 스스로 소통하며 공장의 일들을 순조롭게 진행한다. CPS로 공장 내 복잡한 생산 정보를 식별 및 처리할 뿐만 아니라 외부 CPS와도 일관성이 낮은 데이터 교환에 연결할 수 있다. ▲ 디지털 쌍둥이(디지털 트윈) 구성품 간에 데이터 교환이 가능하다는 것을 증명하기 위해 제작된 기조 시스템. (홍승호 교수 제공) CPS의 개발은 생산성 및 에너지 효율을 대폭 향상한다. 운영단계에서 기계는 자산 운용 데이터(온도, 속도, 진동 등)를 스스로 제어하고 기록해 시스템을 진단하고 안정적인 상태를 유지한다. 시스템 설계자와 엔지니어는 감독과 문제 상태 해결을 수월하게 할 수 있어 진행 속도를 가속할 수 있다. 또한 저장된 과거 데이터는 유지관리 담당자가 고장을 추적하고 분석하는 데 사용할 수 있다. 이를 위해 먼저 기계 데이터의 표준화 작업이 필수적이다. 기계의 표준어를 채택하는 것부터 정보 표현 기술과 전달 기술의 표준화까지 긴 시간이 소요된다. 또 인공지능과 부가적인 시스템을 탑재해야 한다. “여태까지는 공장을 자동화하는 것까지 마쳤고, 오는 2035년에 완전한 스마트제조시스템을 완성할 것으로 예측합니다.” 한국에서 실질적으로 운영하는 시점은 다가오는 2045년으로 보고 있다. 홍 교수는 “CPS기술이 완성되면 4차 산업혁명처럼 스마트제조시스템에서도 새로운 기술적 혁명이 초래할 것”이라고 덧붙였다. ▲ 홍승호 교수는 마지막으로 “많은 학생들이 근본적인 상상을 뛰어넘는 생각을 하면 좋겠다”며 “적극적으로 창조하고 꿈을 실현하길 바란다”고 말했다. 글/ 김민지 기자 melon852@hanyang.ac.kr 사진/ 이현선 기자 qserakr@hanyang.ac.kr

2019-05 14

[학술][이달의 연구자] 방진호 교수, 은 나노입자로 태양전지를 구동하다

방진호 ERICA캠퍼스 과학기술융합대학 화학분자공학과 교수가 은 나노입자를 통해 태양전지를 구동하는 법을 발견했다. 방 교수는 지난 2016년도에 금 나노입자를 태양전지에 적용한 바 있다. 하지만 은은 금보다 불안정하고 전자 수명(excited state lifetime)이 짧기 때문에 태양전지 구동이 어렵다. 방 교수는 어떻게 은으로 태양전지를 구현할 수 있었을까? ▲ 방진호 화학분자공학과 교수는 광전환 효율(태양에너지를 전기 에너지로 바꾸는 효율)이 낮아 실험 소재로 잘 사용되지 않는 은을 실험에 사용해 태양전지를 구동시켰다. 방 교수는 “불안정한 은 나노입자를 보호하면 된다”며 간단한 해결법을 내놓았다. “pH(용액 농도)를 조절해서 리간드(ligand)를 은 나노입자 주위에 둘러싸도록 합니다. 그러면 보호막이 형성돼 은 나노입자의 안정성을 높일 수 있죠.” ▲은 나노입자의 구현 모식도 및 성능 비교 그림이다. (한국연구재단 제공) ▲방진호 화학분자공학과 교수는 “pH(용액 농도)를 조절해 보호막을 형성하면 은 나노입자의 안정성을 높일 수 있다”고 밝혔다. 방 교수의 이번 연구는 광전환 효율(태양에너지를 전기 에너지로 바꾸는 효율)이 낮아 실험 소재로 잘 사용되지 않는 은을 사용했다는 데에 의의가 있다. “새로운 소재를 이용한 연구는 항상 필요합니다. 효율이 낮더라도 다양한 소재로 연구하다 보면 실험의 발전 가능성이 커지기 때문이죠.” 그동안 은 나노입자를 이용한 연구사례는 거의 없었다. “작동원리, 기본 시스템조차 잘 알려져 있지 않아서 기초 연구도 진행해야 했습니다.” 이로 인해 방 교수 연구팀은 은 나노입자 연구의 선두주자 격이 됐다. 위 연구 성과를 담은 논문은 지난 4월 3일, 미국화학회가 발행하는 재료 분야 국제 학술지 ACS 어플라이드 머터리얼즈 앤 인터페이스(ACS Applied Materials&Interfaces) 표지에 게재됐다. ▲ 방진호 화학분자공학과 교수와 연구에 참여한 무하마드 아와이스(Awais) 나노센서연구소 교수가 암실 안에서 태양전지의 성능을 실험하고 있다. 연구는 아직 진행 중이다. “기존 태양전지 소재에는 독성이 많습니다. 실내조명으로 쓰인다면 몸에 매우 해롭죠.” 금이나 은은 장신구로도 쓰일 만큼 인체에 무해하지만 효율이 낮고 고가다. 방 교수는 “연구를 통해 효율을 더 높이고 양을 조절해서 가격을 낮추는 방법이 있다”고 설명했다. 그는 연구 성과가 상용화 단계로 이어지길 바란다고 전했다. “대학 연구가 상용화 단계까지 가는 사례는 드물어요. 힘든 과정이지만 인체에 무해하고 유익한 기술이니 널리 쓰일 수 있도록 노력하겠습니다.” 글/ 옥유경 기자 halo1003@hanyang.ac.kr 사진/ 이현선 기자 qserakr@hanyang.ac.kr

2018-12 31

[학술][이달의 연구자] 최재훈 교수(생명과학과)

동맥경화는 혈관에 지질(동식물 조직에 있는 지방)이 쌓여 동맥이 좁아져 심근경색, 뇌경색과 같은 병을 유발하는 만성 염증성 질환이다. 최재훈 교수(생명과학과)는 동맥경화 병변으로 인해 나타나는 대식세포의 특성과 분리 방법을 지난 2012년부터 연구했다. 7년에 걸쳐 진행된 최 교수의 연구 논문 ‘Transcriptome analysis reveals nonfoamy rather than foamy plaque macrophages are proinflammatory in atherosclerotic murine models’는 심혈관 분야의 세계적 권위지 ‘서큘레이션 리서치(Circulation Research)’ 2018년 10월호에 게재됐다. ▲최재훈 교수(생명과학과) 연구팀은 이번 연구를 통해 보통의 대식세포는 염증을 유발하는 반면, 혈관 내 지질을 섭취한 대식세포는 더 활발하게 식작용을 일으켜 염증 유발을 완화한다는 사실을 밝혀냈다. 동맥경화의 새로운 치료방안 지속해서 고지혈증(혈액 중 지방량이 많은 상태)을 앓아온 환자들은 대부분 동맥경화까지 얻게 된다. 고지혈증 환자의 혈관에 지질이 쌓여 염증이 생기면 면역세포인 대식세포는 손상된 조직을 처리하기 위해 혈관으로 모여든다. 처리 과정에서 지질을 삼킨 대식세포는 몸집이 커져 포말세포(Foamy cell)가 된다. 그동안 동맥경화는 포말세포가 염증 반응을 촉진한다고 알려졌고, 대부분의 연구는 포말세포형성을 줄이는 데 초점이 맞춰져 있었다. “동맥경화증을 앓는 환자 혈관에 포말세포가 많이 발견되니까 포말세포형성을 억제해야 병이 낫는다고 생각한 거죠.” 그의 이번 연구 결과는 기존의 동맥경화증 연구 방향을 뒤집었다. 최 교수 연구팀은 포말세포 형성 후에는 오히려 혈관 내 염증반응이 줄어들고, 혈관에 쌓인 지질을 배출하는 능력이 증가한다는 것을 발견했다. 포말세포가 아닌 이전 단계의 대식세포(Nonfoamy cell)에서 염증반응을 억제해야 한다는 것이다. 전문 인력과 인프라가 확충됐으면 최 교수팀은 개별적인 세포 개체의 유전자 발현을 분석할 수 있는 ‘단일 세포 RNA 시퀀싱’(Single cell RNA sequencing) 기술을 사용하기 위해 2017년 1월부터 약 1년간 미국 워싱턴 대학교(Washington University in Saint Louis)에서 연구를 진행했다. 아직 한국에서는 위 기술을 다루는 전문가와 기술이 부족했기 때문이다. “워싱턴 대학교를 비롯한 미국 유수 대학들이 계속 세계적인 바이오 연구 결과를 낼 수 있는 것은, 최첨단 연구 장비와 이를 관리할 수 있는 뛰어난 전문인력들이 확보됐기 때문입니다.” ▲최재훈 교수(생명과학과)는 생명과학에서 중요한 것은 살아있는 생체 안에서 일어나는 현상이 정확하게 분석되는 것이라며 오래 걸리더라도 의미 있는 연구를 하는 것이 중요하다고 덧붙였다. 최 교수의 연구 철학 최 교수는 수의과학대학교에서 학부와 대학원 시절을 보내면서 동물과 사람의 질환에 호기심을 가졌다. “생체 안에서 일어나는 현상을 발견하고 분석하고 싶었어요.” 최 교수는 현재 노령화 시기에 가장 많이 발생하는 심장 판막질환과 그 외 다양한 염증성 질환을 연구하고 있다. 끝으로 최 교수는 한양대학교 학생들이 논문을 한 편 쓰더라도 유용하고 의미 있는 내용을 담길 권했다. 생체 질환을 연구하면서, 더욱 많은 질환 극복에 도움이 되고 싶은 그의 연구 철학이 담겨있는 말이다. “시간이 걸리더라도 개의치 말고 꾸준히 하세요. 다른 연구자들이 많이 인용할 수 있는 논문을 작성하고, 과학사회에 영향력 있는 연구를 했으면 좋겠습니다.” 글/ 옥유경 기자 halo1003@hanyang.ac.kr 사진/ 이진명 기자 rha925@hanyang.ac.kr

2018-05 27

[학술][이달의 연구자] 고민재 교수(화학공학과) (2)

무한청정 에너지원인 신재생에너지는 꾸준히 발전 중이다. 지구 생태계가 먼 미래까지 버틸 수 있도록 지속 가능한 에너지가 창출돼야만 한다. 고민재 교수(화학공학과) 는 이러한 목표를 갖고 기존의 태양광 에너지와는 다른 ‘차세대 태양전지’를 연구했다. 성능도 좋지만, 가격 또한 합리적이고 심미적이다. 많은 장점을 지니는 차세대 태양전지는 머지않은 미래에 중요 대체 에너지로 주목 받을 전망이다. 더욱 업그레이드 된 태양전지 차세대 연구의 핵심은 태양전지다. 빛을 받아 전기를 발생시키는 소자가 태양전지다. 우리에게 익숙한 태양광 발전은 두껍고 투박하고, 무거운 검은색 실리콘 태양전지를 이용한다. 고 교수는 다른 성격의 태양전지 가능성을 발견했다. 특별한 구조를 갖고 있는 이 태양전지는 유연하게 휘어져서 신체 착장(웨어러블, Wearable)도 가능하다. 이번 연구는 해당 태양전지에 들어가는 신소재를 개발하는 것에 중점을 뒀다. ▲ 지난 24일, 신소재공학관에서 고민재 교수(화학공학과)를 만나 연구에 대한 이야기를 들었다. 이 태양전지에 들어가는 중요 소재는 ‘빛을 훕수하는 소재’와 ‘고속전하전달 소재’다. 고 교수 연구팀은 빛 흡수능력과 전하전달 속도가 뛰어나면서도 안정성이 뛰어는 신소재를 개발하고 이를 값싸게 제작할 수 있는 공정을 개발하였다. 이 소재를 이용한 태양전지는 태양광 외에도 백열등과 형광등 등의 실내등에도 반응해 보다 잠재력이 높다. 투과성이 좋고 다양한 색상 구현이 가능해서 심미적인 면에서도 뛰어나다. 차세대 태양전지는 생산과정 또한 간단하다. 소재 자체가 전지가 되기까지 진공공정과 같은 복잡한 과정을 따로 거치지 않아도 된다. “기존의 실리콘 태양전지를 만들기 위해서는 특별한 장비가 필요해요. 여러 재료들을 합성해야 해서 과정 또한 복잡하죠.” 고 교수는 무겁고, 불투명하고, 실내등이나 흐린 날에는 작동이 안 되는 실리콘 태양전지의 단점을 보완한 것이 차세대 태양전지라 설명했다. ▲ 차세대 태양전지를 응용한 샘플. 노랗고 투명한 바탕에 훈민정음이 덧대어져 있는 것이 바로 차세대 태양전지다. 위에 조그마한 선풍기 날개는 태양전지의 힘으로 돌아간다. 실내등에서도 작동했다. 세계 정상에 서다 그렇다면 차세대 태양전지의 소재는 왜 이제야 발견됐을까? 고 교수는 신소재 발견엔 많은 시간이 필요하다고 답했다. 소재들끼리의 비율을 맞추고, 적정 비율에서 조합을 찾아야 하기 때문이다. 앞으로 고 교수는 차세대 태양전지의 상용화에 힘쓰겠다고 말했다. 전력을 지속적으로 공급받아야 하는 센서와 독립전원으로 우선 이용할 수 있다. 현재 고민재 교수 연구팀에서 보유하고 있는 차세대 태양전지 기술은 세계최고수준으로 평가받고 있다. 고 교수는 개인의 행복을 넘어 사회의 공헌에 연구의 의의를 두었다. “공학도들이 연구를 통해 도출해낸 기술적 결과는 개인적 성취를 넘어서 인류와 사회공동체에 도움이 될 수 있어요. 한양대학교 학생들의 뛰어난 실력에 사회적 책임도 겸한다면 좋겠습니다.” ▲고민재 교수(화학공학과, 가운데)와 연구를 함께하는 김동환(화학공학과 13, 오른쪽) 씨, 그리고 유용석(화학공학과 석사과정,왼쪽) 씨가 실험실에서 함께 포즈를 취하고 있다. 글/유혜정 기자 haejy95@hanyang.ac.kr 사진/강초현 기자 guschrkd@hanyang.ac.kr

2018-05 08

[학술][우수R&D] 배지현 교수(의류학과)

스마트 폰, 스마트 워치, 스마트 의류. 사람들은 편리하고 효율적인 삶을 위해 새로운 것을 추구한다. 구글은 스마트 옷감을 만드는 ‘프로젝트 자카드’를 통해, 지난해 9월 27일 스마트 재킷을 출시했다. 단순히 옷감을 건드리기만 해도 음악 재생, 전화 통화 같은 기능을 실행할 수 있다. 옷감의 실이 움직임을 인식하는 센서 역할을 하기 때문이다. 올해 시작한 배지현 교수(의류학과)의 연구도 이런 웨어러블(wearable, 입을 수 있는) 센서다. 지난 4일, 배 교수를 사무실에서 만났다. 웨어러블 센서를 연구하다 배지현 교수는 유연성과 전도성을 가진, 생체정보를 감지할 수 있는 직물 센서를 연구한다. 그는 이해를 돕기 위해 한 장갑을 꺼내 들었다. 편직물(뜨개질 한 것처럼 만들어진 천)로 만들어진 평범한 장갑. 하지만 검지와 중지의 일정 부분은 다른 재질로 돼 있다. “원사에 은을 코팅한 거예요. 이 부분만 전기가 통하죠. 전도성 실이기 때문에 실 자체가 센서 역할을 합니다.” 장갑센서는 여러 가지로 활용 가능하다. 수화를 하면 센서가 손가락의 움직임을 파악해 기기에 글자를 입력하는 기술이 그 예다. ▲ 지난 4일 배지현 교수(의류학과)를 그의 사무실에서 만났다. 배 교수가 직접 센서가 달린 장갑을 착용해보이며 웨어러블 센서에 대해 설명하고 있다. 센서는 인장, 압력, 터치, 온도와 같은 외부압력에 대한 정보를 모바일 디바이스와 연결한다. 웨어러블 센서를 착용한 사람은 기기를 통해 자신의 상태를 쉽게 알 수 있다. 특히 건강관리를 위한 웨어러블 센서가 배 교수의 목표다. “파킨슨병을 앓는 환자들은 병이 진행되면서 서행을 합니다. 신발에 센서가 있다면 보폭과 속도를 측정해서 미리 병을 예측할 수 있죠. 움직임을 감지해서 미리 처방을 받을 수 있다면 외부의 도움 없이도 회복이 가능합니다.” 웨어러블 센서는 일반인에게도 적용할 수 있다. 트레이너 없이 혼자 운동을 할 때, 자신의 동작이 잘못되면 알림이 가는 것이다. 고령화 시대로 접어들면서 복지에 대한 문제가 대두되고 있다. 배 교수는 자신이 연구하는 센서가 사회적 약자를 위해 쓰였으면 한다. “자금도 부족하고 건강도 좋지 않은 독거 노인, 사회적 약자분들의 복지에 힘이 됐으면 좋겠어요.” 웨어러블 센서는 개인적인 건강관리가 수시로 가능하다는 장점을 갖고 있기 때문이다. 다만 그가 걱정하는 것은 가격. “센서가 있는 제품도 저렴한 가격으로 판매해야 해요. 평범한 신발이 1만원이라고 가정하면, 센서가 부착된 신발은 1만 2000원 정도여야 하죠.” ▲ (a) 정도성 섬유를 적용하여 제작된 장갑 센서의 모습이다. (b) 손가락의 움직임에 따른 전기 저항값을 나타낸 그래프. 움직임이 클수록 저항값의 변화량이 크다. (c) 수화 동작 감지 시스템을 시연하는 모습. (출처: 배지현 교수) 융합하고 소통하다 배 교수는 지난 3월에 이 연구를 시작했다. 하지만 우리대학에 임용되기 전에도 웨어러블 형태의 소자(장치, 전자 회로 따위의 구성 요소가 되는 낱낱의 부품)를 개발하는 팀에 들었던 적이 있다. “섬유공학을 전공하고 전자회사에서 일했어요. 자연스레 전기, 기계가 관련된 일과 제 분야를 융합해서 보게 됐죠.” 자신과 다른 분야에 있는 사람의 지식을 융합한다면 큰 시너지 효과를 낼 수 있다. 웨어러블 센서도 같은 선상에 있다. 생체정보를 감지하는 기술, 정보를 기기로 옮겨 착용자에게 제공하는 데이터는 전기전자 전공자가 맡는다. 하지만 그 외에 센서로 만드는 실 제작이나 옷의 신축성 및 디자인 고려는 섬유를 공부한 사람이 할 수 있는 분야다. 웨어러블 센서라는 목표에 도달하기 위해서는 서로 다른 분야의 정보를 받아들이고 소통할 준비가 돼 있어야 한다. 섬유로 할 수 있는 모든 것이 연구대상 같이 연구하는 학부생은 2명. “아무래도 의류학과 학생들에게 전자와 ICT쪽은 생소하죠. 대학원에서 전기전자와 관련한 의류 수업도 하지만 관심을 보이는 학생이 적어요.” 연구 진행에 어려움을 겪고 있기 때문에 타대학 교수들과 협력하기도 한다. 현재 연구는 센서의 소재에 집중하고 있다. “자체적으로 전기적 특성을 낼 수 있는 섬유, 전기 방사를 통해서 전도성 고분자를 만드는 연구 그리고 옷을 자주 세탁해도 전도성 고분자를 섬유에 부착할 수 있는 염색공정도 진행 중입니다.” ▲ 배지현 교수(의류학과)의 웨어러블 센서 연구는 아직 초기 단계다. 사회적 약자를 위해 웨어러블 센서를 연구하는 배지현 교수. 연구에 대한 그의 열의는 계속된다. 건축에도 관심이 많다. 섬유를 기반으로 만드는 건축이다. 방탄, 불연(불에 타지 않음) 기능의 직물소재로 지은 건물은 안정성 면에서 우수하다. 또 쉽게 짓고, 쉽게 철거 할 수 있다. 건축재료인 섬유는 바람에 진동하기도 한다. “섬유가 자체적으로 바람에너지를 저장해 전기적인 효율을 낼 수 있습니다.” 섬유라는 자기 기반을 가진 배교수의 열의는 웨어러블 연구와 함께 계속된다. 글/ 옥유경 기자 halo1003@hanyang.ac.kr 사진/ 이진명 기자 rha925@hanyang.ac.kr

2018-04 30

[학술][이달의 연구자] 김학성 교수(기계공학부)

0.3~3테라헤르츠 사이의 주파수를 가진 전자파, 테라헤르츠(Terahertz)파. 1초에 1조(테라) 번 진동할 때 주파수는 1테라헤르츠다. 주파수가 적외선과 마이크로파 사이에 있는 테라헤르츠파는 금속이 아닌 모든 물질을 다 투과하는 성질을 갖고 있다. 기존에 쓰이는 엑스선 기술과 유사하지만 유해성이 훨씬 낮다. 약하지만 인체에 손상을 주는 엑스선과 달리 테라헤르츠파는 안전하게 쓸 수 있다. 이 덕에 의료계 등지에서 테라헤르츠 기술에 대한 관심이 높다. 김학성 교수(기계공학부)는 테라헤르츠의 상용화를 위해 5년 넘게 연구를 이어왔다. 일반인에겐 아직 생소한 테라헤르츠 기술 연구에 대해 김 교수의 이야기를 들었다. 세계를 이끌 10대 기술, 테라헤르츠 “몇년 전, MIT(매사추세츠 공과대학교)는 테라헤르츠 기술이 세계를 선도하리라 말했어요. 물질을 투과하고 인체에 무해하다는 특성을 눈여겨 보다 연구를 시작했습니다.” 기계공학을 전공한 김 교수는 테라헤르츠 기술 연구를 위해 물리와 전자를 다시 공부해야 했다. 연구를 거듭하며 김 교수는 테라헤르츠파를 어떻게 기술로 응용할지 방법을 찾았다. ▲지난달 25일, 김학성 교수(기계공학부)를 그의 연구실에서 만나 테라헤르츠 기술에 대한 그간의 연구결과를 들었다. 방사선이 방출되는 엑스레이나 자기공명단층촬영(MRI)과 달리, 테라헤르츠 기술은 무해하다는 장점을 갖고 있다. 이에 세계가 엑스레이의 대체재로 주목하고 있다. 하지만 테라헤르츠파는 발생시키기가 어렵다. 과거에는 30억에 달하는 비싼 장비로 발생시켜야만 했다. 최근에는 가격을 점점 낮추는 연구가 진행되지만 대부분 테라헤르츠파를 얻는데만 초점이 맞춰져 있다. 이에 아쉬움을 느낀 김 교수는 테라헤르츠의 상용화에 집중했다. 우리 눈에 잘 보이지 않는 ‘용접선’ 김 교수의 연구 결과, 테라헤르츠파를 통해 '사출성형 제품'의 용접선을 검출할 수 있다. 사출성형(injection molding)은 플라스틱을 가공하는 여러 방법 중 하나다. 모형틀에 녹은 플라스틱을 부은 후 굳히는 기술로 대량생산이 이 방법으로 진행된다. 이 생산과정에서 종종 ‘용접선’이 생긴다. 용접선은 용접 한 곳에 생기는 줄이다. 사출성형 과정에서 녹은 플라스틱이 균일하게 퍼지지 않을 때 용접선이 발생한다. 다음은 김 교수의 설명. “자동차 부품처럼 하중을 많이 받는 제품은 용접선이 생기면 안돼요. 하중을 견디지 못하고 깨지기 쉽죠.” 하중을 많이 받는 제품들은 이를 견디게끔 플라스틱 안에 유리섬유가 섞여 들어간다. 하지만 용접선이 생기면 무용지물이다. 유리섬유가 무게를 지탱하기 위해 설 방향을 잃기 때문이다. 용접선의 위치와 무게를 많이 받는 곳이 겹치지 않을 필요가 있다. 하지만 어디에 용접선이 생길지는 예측불가다. 김 교수는 이 문제를 테라헤르츠 기술이 해결해줄 수 있다고 말했다. “사출성형 제품에 테라헤르츠파를 쏘면, 섬유의 방향을 알 수 있어요. 섬유 방향에 따라 테라헤르츠파의 속도가 느려지거나 빨라집니다. 이 속도차로 용접선을 검출할 수 있는거죠.” 용접선을 검출하기 위해서는 빠르고 정확한 스캐닝도 필요하다. 김 교수는 테라헤르츠 스캐너 장비의 개발에 힘쓰고 있다. 테라헤르츠 스캐너가 빠른 속도로 스캔을 할 수 있도록 김 교수는 금속코팅 된 거울을 붙였다. 테라헤르츠파를 금속코팅 된 ‘갈바노 거울’에 쏘면 반사되면서 사출성형 제품 전면을 10초안에 스캔한다. 완전한 상용화를 위해 연구한 이 장비는 호평을 받았다. ▲ 테라헤르츠를 통해 사출성형 제품을 스캔하는 스캐너 장비. 'G1'이라고 표시된 장비가 테라헤르츠를 반사시키는 '갈바노 거울'이다. 이 거울은 스캐닝 시간을 단축시키는 역할을 한다. 김학성 교수의 ‘다기능성복합재료연구실’(MCDM LAB) 물리와 전자책을 훑으며 다시 공부해야 했던 김 교수. 그와 테라헤르츠는 만난 지 몇 년 되지 않았다. “저는 기계과라서 다른 학문을 다루기가 제일 힘들었어요. 학문을 융합했을 때 그 경계에서 새로운 발견이 항상 나타나요. 테라헤르츠도 물리, 전자, 기계의 합작이라서 재밌었죠.” 그는 기계공학을 기반으로 두고 여러 분야로 확장시키는 것이 목표라 말했다. 학생들에게도 아낌없는 사랑을 보냈다. “연구는 재미가 있어야 해요. 저는 항상 왜 해야 하는지 설명을 곁들어서 연구를 진행해요. 이번 테라헤르츠 연구도 아무도 안 하겠다고 했지만, 전세계 처음으로 하는 연구라고 설명하니 자부심을 갖고 매진하더라고요.” 항상 학생들이 행복하고 즐겁게 연구했으면 하는 바람을 나타낸 김 교수. ‘다기능성복합재료연구실’이라는 연구실 명칭은 하고 싶은 연구를 이어가자는 의미다. ▲이번 연구에 함께한 오경환(기계공학부 석사과정) 씨와 김학성 교수가 연구실 안에서 포즈를 취하고 있다. 글/유혜정 기자 haejy95@hanyang.ac.kr 사진/최민주 기자 lovelymin32@hanyang.ac.kr

2018-01 03

[학술][이달의 연구자] 윤정모 교수(경제금융학부)

소가(訴價)가 2000만 원 이하인 소액 사건과 소가가 2억 원 이내인 사건의 처리 기간은 평균 2년 2개월. 기나긴 판결과정 속에 소송을 제기하는 원고와 당하는 피고 사이의 갈등은 깊어져만 간다. 정작 2년 2개월이라는 시간 동안 해결되지 못한 사건들이 많다는 것도 문제다. 이런 상황에서 한국과 미국에서는 소송 건수가 급증하고 있다. 전체 소송을 줄이되, 그 중에서 원고가 승소할 가능성이 높은 소송을 살려 소송의 ‘질’을 높이자는 목소리가 커지는 가운데, 윤정모 교수(경제금융학부)는 이 문제를 경제학적 측면에서 접근했다. 소송 비용, 누가 부담해야 하나 윤 교수가 연구에서 초점을 맞춘 것은 바로 ‘소송 비용을 누가 부담하느냐’다. 소송 비용을 부담하는 방식에는 두 가지가 있다. 바로 패소한 사람이 부담하는 ‘패소자 부담 원칙’(English Rule)과 각자 부담하는 ‘아메리칸 룰(American Rule)’이다. 한국 같은 경우는 패소자가 사건의 원인제공을 했기 때문에 패소자 부담 원칙이 지켜지고 있다. 하지만 상황에 따라 여러 가지 예외 또한 인정이 된다. 윤 교수에 따르면, 경제학 모델은 패소자 부담 원칙을 긍정적으로 바라보고 있다고 한다. “패소자 부담 원칙을 적용하면, 원고가 승소했을 때 피고로부터 받는 판결 금액과 승소 금액이 높아진다는 것이 교과서적인 결론이에요.” ▲단순한 의문에서 시작된 연구. 윤정모 교수(경제금융학부)는 법경제학 이론을 전문으로 하는 공조자와 함께 궁금증을 공유하며 연구에 시동을 걸었다. 이제껏 연구된 실증분석 결과로는, 패소자 부담 원칙을 택해야 소송의 ‘질’이 높아진다. 여기서 질 높은 소송이란 원고가 이길 때와 보상을 많이 받을 때를 일컫는다. 경제학 이론에서 보면, 패소자 부담 원칙을 따를 경우 중간에 합의를 보는 비율은 낮아진다. 더 많은 소송이 재판 끝까지 가게 되는 것이다. 이로 인해 소송의 질적인 가치가 높아지는 것은 좋지만, 윤 교수는 그로 인해 올라가는 개인적이고 사회적인 비용을 따져야 한다고 지적했다. 그렇게 패소자 부담 원칙의 효율성과 효과에 윤 교수는 의문점을 제기했다. 새로운 방법론으로 연구하다 연구 진행에 필요한 가장 좋은 방법론은 ‘패소자 부담 원칙’과 ‘각자 부담 원칙’을 1:1로 직접 비교하는 것이지만, 하나의 소송 사례가 두 가지 비용 부담 원칙하에서 다루어지지는 않기 때문에, 1:1의 비교는 어려웠다. 대신, 윤 교수는 같은 주에서 일어난 사례들을 비교연구했다. 그는 지난 1980~85년 미국 플로리다 주의 소송 사례들을 계량적으로 분석했다. 지난 1980년까지 플로리다는 각자 부담 원칙을 시행했지만, 그로부터 5년간 패소자 부담 원칙으로 바꿨다. “하지만 플로리다 주는 다시 각자 부담 원칙으로 돌아갔어요. 5년 동안 패소자 부담 원칙으로 해보니, 안 좋았던 거죠. 미국에서는 보험회사가 보험연합회에 데이터를 보고해야 하는 의무가 있기 때문에, 데이터를 구할 수 있었어요.” ▲그래프 (a)와 (b)의 선명한 선은 ‘아메리칸 룰’에 의한 결과를 나타낸다. 회색으로 표시된 부분은 ‘패소자 부담 원칙’하의 결과를 나타낸다. (c)와 (d)는 그 반대다. 그래프 (a)는 소송 보상금, (b)는 소송 비용, (c)는 합의 건수, 그리고 (d)는 합의 비용을 보여준다. 하지만 2년간 진행된 이 연구의 특이점은 한기지 수치로 표현된 결론이 없다는 것이다. 예전 연구들에서는 수치와 통계로 패소자 부담 원칙이 효과가 있다는 것을 보여줬다면, 윤 교수는 그 수치가 여러 가정 하에 바뀐다는 사실을 전제로 했다. 따라서, 여러 시나리오를 통해 최고와 최악의 상황을 계산했다. “결국 알아낸 사실은, ‘우리가 아는 것이 생각보다 적다’라는 것이었어요. 패소자 부담 원칙이 알려진 것처럼 무조건 좋은 것이 아니고, 이런 결론을 내는 것에 있어 우리가 조심스러워해야 할 필요가 있다는 걸 알려주고 싶었습니다.” 결론만 쫓지 말아라 “회의감이 굉장히 컸어요. 결론이 없어서 논문이 끝이 안 나기도 하고, 결론이 있는데 재미가 없어서 끝이 안 나기도 하죠. 스스로한테 의심이 생기기 마련이에요.” 윤 교수는 웃으며 자신이 느꼈던 회의감에 대해 얘기했다. “경제학이라는 학문은 뚜렷한 결과를 내지 못할 때가 꽤 있어요. 공부를 하면서 결론이 없다고 의의를 못 찾게 되면 슬럼프가 오기 쉽죠.” 하지만 윤 교수는 줄곧 해온 경제학 공부와 연구를 포기하지 않았다. 박사 과정을 끝낼 무렵 찾아간 지도교수님과 ‘열심히’ 하기로 한 약속 때문이다. 연구나 공부에 회의감이 들어도, 그 약속이 떠올라 포기하지 않는다는 것이 장기적인 목표인 윤 교수는 또 하나의 법경제학과 계량경제학의 이론이 적용된 연구를 진행하고 있다. 연구의 정답이 없더라도, 그의 도전은 계속된다. ▲”요즘 학생들을 보면 다 열심히 하고, 잘 해요. 한 가지 걱정은 다 비슷한걸 하려 한다는 것뿐이에요.” 윤 교수는 학생들이 많은 것을 시도해 봤으면 하는 바람을 나타냈다. 글/ 유혜정 기자 haejy95@hanyang.ac.kr 사진/강초현 기자 guschrkd@hanyang.ac.kr

2017-02 27

[학술][이달의 연구자] 김기현 교수(건설환경공학과)

주변 환경이 인간의 건강에 미치는 영향은 지대하다. 이달의 연구자 김기현 교수(건설환경공학과)는 최근 탄소나노튜브의 환경보건학적 활용에 관한 리뷰 논문(여러 논문의 성과를 하나의 논문으로 정리한 것)을 집필했다. 대기오염 등의 환경오염 분야를 지속적으로 연구해온 김 교수는 신소재가 주변 환경 개선에 어떻게 활용될 수 있을지를 고민했다고 했다. 신소재에 관한 연구가 소재 자체의 발전을 넘어, 주변 환경과 인간 삶의 질 개선에 도움을 줄 때 더 가치 있는 연구가 가능하단 것이 그의 생각이다. 신소재의 활용 방안, 무궁무진한 가능성 있다 나노 물질에 대한 연구는 물리, 화학, 생명 등 다양한 분야에서 진행됐다. 최근에는 여러 소재의 결합을 통한 첨단 소재에 관한 연구도 늘었다. 특히 탄소나노튜브의 활용도가 높다. 다른 소재에 비해 부피 대비 표면적이 넓고, 광학적-전기적 인장 강도가 높다는 특성 때문이다. 김기현 교수는 탄소나노튜브를 중심으로 신소재를 환경 및 헬스 케어 분야에 활용할 방안을 제시했다. "나노 소재를 실제로 활용하는 방안에 대한 연구는 여전히 많은 가능성을 갖고 있습니다. 이번 논문은 소재 연구를 다른 문제와 관련지을 때 더 새로운 가치가 있단 것을 보여주고자 했던 리뷰 논문입니다." 기존 소재 연구가 소재 자체의 특성을 개선하거나 첨단 소재를 찾는 데 집중했다면, 이번 논문은 이런 소재의 활용 방안에 대한 것이라는 설명이다. 예컨대, 탄소나노튜브는 헬스 케어 분야에서 활용될 수 있다. 인체의 뼈를 대신하거나, 조직하는 물질로 사용될 수 있고 심근경색 등의 혈관 질환을 치료하기에도 유용하다. 기존 소재를 사용할 때 생기는 경제적 부담을 개선할 수 있을 것이란 기대도 높다. 한 가지 유의할 점은 신체의 면역∙항체반응이 일어날 수 있다는 것. 첨단 소재가 가진 독성을 차단할 수 있도록 '코팅'이나 '변형'을 통해 위험 없는 소재로 바꾸는 연구가 진행돼야 한다. 환경문제 해결에도 신소재가 활용될 수 있다. 대기 중에 있는 휘발성유기화합물질(Volatile Organic Compounds)은 휘발되면서 악취를 내고, 호흡기를 통해 흡입하면 발암 물질을 유발할 수 있다. 이런 물질을 감지하는 수단으로 '금속유기구조체'가 이용되고 있다. 평소 대기 오염에 관한 다수 연구를 진행하는 김 교수는 "첨단 소재를 통해 공기 정화를 하는 방법을 찾다가 이번에 총설을 썼다"고 설명했다. ▲김기현 교수(건설환경공학과)는 탄소나노튜브 등의 신소재가 환경 문제 개선에 활용될 수 있다며 관련 연구를 촉구했다. 환경 문제와 신소재의 융합, 블루오션 기대해 이처럼 김 교수의 연구는 신소재의 새로운 활용 방안이나 가치 창출에 더 집중했다. 소재 자체의 경제적 가치와 성능, 효율 등을 뛰어넘어 주변 환경 및 건강 문제 개선에 도움을 주는 방향을 제시한 것이다. 환경 오염이 심화되는 추세인 만큼 김 교수의 이번 제안은 '블루오션' 연구에 대한 기대를 모으게 한다. "소재 연구가 주변 환경과 시너지를 내는 방향으로 진행돼야 한다고 생각합니다. 신소재와 환경 분야 간의 연구가 충분하지 않기 때문에 블루오션이라 부를 만해요." 김 교수의 현재 연구 주제는 3가지다. 토양, 대기, 수질 오염 등 다양한 환경오염 지표를 통합 관리하는 모니터링 시스템, 전자담배의 발암물질을 정확하게 측정하는 방법, 축산업에서 발생하는 악취를 효과적으로 제거할 수 있는 방법에 대한 연구다. 김 교수는 평소 환경 관련 연구를 진행하며, 오염 정도 감지 기술 등에 신소재를 활용할 방안을 고민해왔다. 이번 논문도 이런 고민이 있었기에 나올 수 있었다. ▲김기현 교수가 '흡착 튜브'를 통해 분석한 대기 중의 오염물질에 대해 설명하고 있다. 타인과의 경쟁보다 '더 좋은 연구'에 집중해야 김기현 교수는 초심을 잃지 않고 연구하는 것이 연구자의 기본 자세라고 밝혔다. 제자들을 가르치며 연구에 집중하지 못하거나, 연구보다 타인과의 경쟁에 몰두하는 모습을 종종 발견하기 때문이다. 김기현 교수는 "학부 때는 학점 경쟁만이 전부인 것처럼 보이지만, 다른 사람과의 경쟁보다 '더 좋은 연구'를 만드는 것이 연구자의 중요한 목표가 돼야 한다"고 거듭 강조했다. ▲김기현 교수는 "신소재를 이용해 대기오염 문제를 해결하고 싶다" 며 학자로서의 강한 의지를 밝혔다. 글/ 오상훈 기자 ilgok3@hanyang.ac.kr 사진/ 최민주 기자 lovelymin@hanyang.ac.kr

2017-02 06

[학술][이달의 연구자] 선양국 교수(에너지공학과) (2)

전기자동차 시장은 빠른 속도로 성장하고 있다. 그러나 1회 충전으로 달릴 수 있는 거리가 내연기관 자동차에 비해 짧다는 점은 늘 한계로 지적됐다. 때문에 최근 에너지 공학계의 핵심 과제는 전기자동차 배터리의 용량을 안전하게 높이는 것이었다. 선양국 교수(에너지공학과)가 10년 동안의 연구 끝에 이 문제를 해결할 실마리를 찾았다. 배터리에 사용되는 양극 입자 속 물질 농도를 조절하는 것. 중앙과 표면의 물질 구성이 다른 양극 입자를 사용하면 안정성과 용량이란 두 마리 토끼를 잡을 수 있다. 특히 이번 연구에서 제시한 3세대 양극 소재 Al-FCG61은 3,000 사이클 이상 작동하고도 높은 효율을 유지해 학계와 업계의 주목을 받는다. 양극 입자 속 니켈과 망간 농도 조절, 용량과 안정성 모두 잡다 전기자동차 대부분에 들어가는 배터리는 1회 충전으로 150km 정도를 달릴 수 있다. 내연기관 자동차가 1회 주유로 450km를 달리는 것에 비하면 현저히 짧은 거리다. 전기자동차가 1회 충전으로 350km 이상을 달리게 하려면 배터리 내 양극 소재의 용량을 200mAh/g까지 올려야한다. 양극 소재의 용량을 높이기 위해선 니켈 함량을 늘려야 하는데, 문제는 니켈 함량이 늘어나면 열 때문에 배터리가 폭발할 확률도 높아진단 점이다. 배터리의 안정성과 용량이 반비례 관계라고 말하는 이유다. 선양국 교수는 니켈 함량이 높은 양극 소재의 표면이 전해질과 만나는 과정에서 이런 문제가 발생한다는 것을 알아냈다. 그리고 양극 입자를 구성하는 물질의 농도를 위치에 따라 달리하는 FCG(Full Concentration Gradient) 소재를 고안했다. 즉, 입자의 중앙에서 표면으로 갈수록 니켈 함량은 줄어들고, 안정성을 높이는 망간의 함량이 높아지는 것이다. 선양국 교수는 10년 동안의 연구를 통해 농도 차이가 예전보다 극명하게 높은 양극 소재를 4세대까지 개발해 특허를 받았다. 여기에는 윤종승 교수(신소재공학부)의 도움도 컸다. 윤 교수가 입자 결정 구조를 분석하고, 선 교수가 합성을 맡았다 ▲ 선양국 교수(에너지공학과)가 개발한 3세대 양극 소재 FCG(Full Concentration Gradient)의 모식도. 입자의 중앙에서 표면으로 갈수록 니켈 함량은 줄어들고, 안정성이 높은 망간 함량이 늘어난다. 에너지 효율 높인 Al-FCG61의 발견 선 교수는 이번 연구에서 알루미늄을 추가한 3세대 양극 소재 Al-FCG61을 개발했다. 이 소재를 사용할 경우 배터리 효율은 높이고 수명은 늘릴 수 있다. 실험 결과 방전 심도 100%에서 3,000번 충·방전을 거듭해도 초기 용량의 80%를 유지했다. 방전 심도란 충전에서 방전까지 배터리가 사용하는 용량을 말한다. 방전 심도가 높으면 배터리 수명이 줄어들기 때문에, 일반적으로는 완충 시에도 전체 용량의 60% 정도만 사용하게 만든다. 용량의 100%를 사용할 경우 충·방전을 수백회 거치면 수명이 다하지만, 늘 60% 정도만 사용하면 수명이 수천회로 늘어나는 원리다. 그러나 배터리 용량의 40%가 사용되지 않은 상태로 남는 데다, 배터리를 더 많이 사용해야하므로 비용 부담이 크다는 문제가 있었다. 결국 용량을 100% 사용하면서도 수명이 긴 배터리가 절실했다. 이런 점에서 선 교수가 개발한 Al-FCG61은 학계와 업계가 주목할 만한 성과를 거뒀다. Al-FCG61의 효율이 높은 이유는 다른 양극 소재와 결정 구조가 달라, 충·방전 과정에서 미세구조 내에 쌓이는 충격이 줄었기 때문. 선 교수는 "이번 연구를 통해 전기차 생산 비용이 줄어들면 제조 과정에서 경쟁력을 가질 수 있을 것"이라고 했다. ▲ 선양국 교수가 4세대 양극 소재인 TSFCG(Two Slope Full Concentration Gradient) 구조에 대해 설명 중이다. TSFCG는 니켈의 함량이 3세대에 비해 더 높다. 4차 산업혁명 대비할 차세대 성장 동력 필요해 선양국 교수는 4세대 양극 소재를 개발한 것으로 이번 연구를 마무리하고, 다른 구조를 지닌 새로운 재료 개발에 힘쓸 계획이라고 밝혔다. 2000년 우리대학에 부임한 이래, 지금까지 에너지 밀도가 높은 재료 연구에 몰두했다. 연구를 막 시작했을 무렵에는 이 분야에 관심을 갖는 연구자가 드물었으나, 선 교수는 고효율 에너지의 필요성을 예측하고 일찍부터 연구에 임했다. 선 교수는 "새로운 재료를 개발하려면 세계 최고의 성과를 거두겠다는 열정과 노력, 창의성이 필요하다"며 "한국은 4차 산업혁명을 대비해 차세대 성장 동력을 만들기 위해 힘써야 한다"고 전했다. ▲선양국 교수는 "새로운 소재 개발에 끈기를 갖고 도전하는 후배 연구자가 많이 생기길 바란다"고 했다. 글/ 신혜빈 기자 shb2033@hanyang.ac.kr 사진/ 김윤수 기자 rladbstn625@hanyang.ac.kr

2016-12 01

[학술][이달의 연구자] 조준형 교수(물리학과)

물리학에서 세상은 '거시세계'와 '미시세계'로 나뉜다. 거시세계는 우리가 흔히 눈으로 볼 수 있는 세계를 말하며, 미시세계는 눈에 보이지 않는 매우 작은 세계를 말한다. 문제는 미시세계의 물질들이 거시세계와 다른 성질을 보이기 때문에, 나노구조(Nanostructure)에 대한 연구가 매우 어렵다는 점이다. 지금까지 나노구조에 대한 연구는 매번 개별적으로 진행됐다. 하지만 그간의 연구 결과를 통합할 필요가 있었고, 조준형 교수(물리학과)와 연구진이 지난 30년 동안 쌓인 연구 결과를 통합하는 이론을 제시했다. 축적된 연구 통합하는 이론 제시 “새로운 퍼즐 조각을 발견하는 것도 의미있는 일이지만, 오랫동안 쌓인 퍼즐조각들로 하나의 그림을 만드는 것도 굉장히 중요하다." 지난 30년 동안 나노구조의 일종인 나노선(Nano wires, 원자가 1차원 선 모양으로 나열된 것)과 나노필름(Nano films, 원자가 2차원 면 모양으로 펼쳐진 것)의 형성에 대한 연구는 무수히 많았다. 하지만 대부분 금속의 종류에 따라, 나노선과 나노필름마다 따로 연구가 진행돼 일반적인 경향을 찾기 어려웠다. “30여년 동안 진행된 수많은 실험 및 이론 연구들이 흩어져 있는데, 이를 통합시킬 이론이 필요해 연구를 시작했습니다.” 조준형 교수의 연구팀이 이런 연구를 시작한 이유다. 기존에 반도체 표면 위 다양한 1, 2차원 나노구조에 대한 연구를 수행했던 것이 유용했다. 나노구조를 이해하려면 우선 미시세계에 대한 이해가 필요하다. 거시세계의 경우, 자연계열 학생이라면 고등학교 때부터 배우는 ‘뉴턴 역학’을 바탕으로 물리 현상을 설명한다. “하지만 미시세계, 특히 이번에 연구한 나노미터 크기(원자, 분자 크기) 수준에서 나타나는 현상은 뉴턴 역학으로 설명할 수 없는 경우가 대부분입니다. 또 이 현상들은 우리의 직관과는 맞지 않는 경우가 많습니다. 이는 ‘양자 역학’이라는 새로운 방법을 통해 설명하게 됩니다.” 일반적으로 에너지의 크기나 파장이 변하는건 연속적으로 생각한다. 가령, 소리의 크기나 호수의 물결, 불의 세기와 같은 것이 변하는 것을 이어진 그래프로 나타낸다. “미시세계에서는 다릅니다. 에너지의 크기나 파장이 변할 때 띄엄띄엄 변하며, 이를 양자화 돼있다고 합니다. 이번 연구에서 다룬 나노선과 나노필름 또한 무조건 하나로 결정되는 것이 아니라 특정한 선호하는 길이 또는 두께로 형성되는 것입니다.” 밀도범함수를 통해 본다 이번 연구에서 쓰인 주된 이론은 ‘밀도범함수 이론’이다. 양자역학에 기초해 물질의 전자구조와 물성을 계산할 수 있는 방법이다. 물질의 전자가 가질 수 있는 분포와 전자기적, 광학적 성질 등을 알 수 있다는 것. “최근 컴퓨터의 발달에 힘입어 다양한 물질계에 적용되고 있는 이론입니다. 1998년에는 노벨 화학상을 받기도 했었죠.” 이 이론을 활용하면, 기존의 복잡했던 슈뢰딩거 방정식을 이용하지 않고도 필요한 정보를 얻을 수 있다. 또 최근에는 양자역학 이외의 분야에서도 쓰이기도. “우리 연구실에선 밀도범함수 이론을 이용해 물질의 에너지, 전자상태 및 에너지준위, 전 밀도와 같은 물리량들을 계산했습니다.” 나노구조를 파악한 방법 또한 흥미롭다. 여기에는 ‘결함’(Defect)이라는 개념이 중요하다. “고체에는 원자들이 주기적으로 배치돼 있어요. 어느 지점에서 이러한 주기성이 깨지는데, 물리학에선 이를 ‘결정결함’(crystallographic defect)이라고 합니다. 한 개의 원자가 있어야 할 위치에 없는 경우를 ‘점결함’(point defect), 여러 원자가 면 모양으로 없는 경우를 ‘면결함’(planar defect)라 부르는 식이죠.” 이번 연구에서 파악한 나노구조들 또한 결함을 이용해 파악했다. “특정 길이를 갖는 나노선은 무한정 긴 1차원 원자선 어딘가에서 점결함이 생긴 것으로, 특정 두께를 갖는 나노필름은 무한정으로 큰 3차원 물질의 어느 두께부터 면결함이 생긴 것으로 볼 수 있습니다.” 프리델 진동 통해 파악해 이 결함을 찾는데 사용된 것이 바로 ‘프리델 진동’(Friedel oscillation)이다. “앞서 말했던 것처럼 특정 길이나 두께를 갖는 물체는 무한정 크거나 긴 물체에 결함이 생긴 것으로 바꿔 생각할 수 있습니다. 이때 고체 안의 전자들이 결함과 상호작용하며 전자밀도파(파동의 일종)를 형성하고, 이를 프리델 진동이라 합니다.” 잔잔한 호수에 돌멩이를 던지면 물결이 생기듯, 주기적인 배열에 결함이 생기면서 진동이 발생하는 것이다. “나노선의 길이는 프리델 진동의 파장과 일치할 때, 에너지가 안정됩니다. 이때 프리델 진동의 주기(그리고 파장)은 나노구조의 성분 및 직경에 따라 결정됩니다.” 이 주기에 따라, 각각의 나노선과 나노필름의 길이와 두께가 선호되는 것이다. ▲ 나노선의 직경이 커짐에 따른 모양 변화와 매직 렝쓰(Magic length)가 나타나는 주기를 나타낸 그래프. 주기율표에서 1열과 11열에 존재하는 나트륨, 금, 은 등은 직경이 커질수록 주기가 증가하고, 그 외의 금속들은 감소하게 됨을 알 수 있다. (출처: 조준형 교수) 이 주기에 따라, 각각의 나노선과 나노필름의 선호하는 길이와 두께가 결정되며 이를 ‘매직 렝쓰’(Magic length)라 한다. “나노선의 경우 리튬, 나트륨과 같은 알칼리 금속과 금,은이 포함된 주기율표 11번째 열의 금속들은 직경이 커질수록 매직 렝쓰가 나타나는 주기가 길어집니다. 반대로 주기율표 11번째 열을 제외한 3열부터 15열까지의 금속원소들은 직경이 커질수록 매직 렝쓰가 나타나는 주기가 짧아짐을 발견했습니다.” 한가지 주목할 점은 나노선의 직경이 커지다 보면 어느 순간 나노필름과 같아진다는 점이다. “이는 곧 나노선이 충분히 두꺼워지면 이는 나노필름의 두께를 따지듯 할 수 있다는 것입니다.” ▲(a)부터 (e)까지는 각각 나노선의 직경에 따른 모습과 단면을 보여준 것이며, (f)는 나노필름의 단면을 보여준 것이다. (출처: 조준형 교수) “과학은 경험과 소통을 통해 발전한다” 현재 조 교수는 중국에서 연구년을 보내고 있다. 이번 연구는 중국과학기술대학(USTC) 및 정저우대학(Zhengzhou University) 연구팀과 공동연구로 진행했으며, 우리대학에서는 조 교수가 교신저자, 이세호(물리학과 박사과정) 씨가 제2저자로 참가했다. 조 교수는 연구로 바쁜 와중에도 우리대학 학생들과 지속적으로 소통한다고. “비록 몸은 타지에 있지만 수시로 학생들과 연락합니다.” 주로 화상보고나 이메일을 통해 연구 진행 상황을 보고받고 있다. “많은 경험과 소통을 통해, 과학이 발전할 수 있다고 생각합니다. 지속적으로 연구 진행 상황을 보고 받는 것도 그 때문이죠.” 한편 조 교수는 이 연구 이후로도 지속적으로 나노구조물에 대해 연구를 진행하고 있다. “현재 우리 연구실에서는 나노 분야 뿐만 아니라 표면 분야, 토폴로지 분야를 융합시켜 연구하려 합니다. 즉 나노구조물이 고체 표면에 형성될 때 나타날 수 있는 새로운 상태를 발견하고, 여러 상태들 간에 나타나는 현상에 많은 관심을 가지고 있습니다.” 조 교수의 연구분야인 물리학, 특히 나노구조는 일반인에겐 무척 낯선 분야다. 그러나 이는 기초과학으로서 이후 공학의 발전과 기술의 발전에 큰 기여를 할 수 있으며, 궁극적으로 우리 삶에 많은 변화를 불러일으킬 수 있다. 조 교수의 향후 연구에 더더욱 눈길이 가는 이유다. ▲조준형 교수(물리학과)는 앞으로 이번 연구에 이어 물리학의 나노 분야와 다른 분야들을 융합한 연구를 할 계획이다. (출처: 조준형 교수) 이상호 기자 ta4tsg@hanyang.ac.kr

2016-11 02

[학술][이달의 연구자] 백운규 교수(에너지공학과) (1)

백운규 교수(에너지공학과) 연구팀이 최근 '소듐이온배터리'의 효율 개선에 대한 연구를 세간에 알렸다. 소듐이온배터리는 현재 널리 사용 중인 리튬이온배터리를 대체할 수단으로 꼽히지만, 여러 한계로 인해 상용화되지 못하는 상황이다. 백 교수는 소듐이온배터리의 부피 팽창을 막고, 저장 용량을 늘릴 수 있는 실마리를 제시했다. 속이 빈 튜브 형태의 나노 막대에 탄소층을 입힌 'Sb@C 동축나노튜브'를 전극으로 사용하는 것. 백 교수를 만나 이번 연구 결과에 관해 들었다. 소듐이온배터리의 필요성과 연구 과제는 스마트폰을 포함해 많은 전자기기에는 리튬이온배터리가 사용되고 있다. 그러나 원자재인 리튬의 가격이 비싼 데다, 수입에만 의존해야 한다는 문제가 있다. 한국처럼 원자재 생산이 어려운 나라에서는 대체 자원의 필요성이 절실한 실정. "리튬의 주 생산지인 불가리아 광산을 확보하더라도, 가격 조정에 한계가 있어요. 리튬 대신 소듐을 사용하면 가격 부담을 줄일 수 있습니다." 이런 장점에도 불구하고 소듐이온배터리가 상용화되지 못한 데는 여러가지 이유가 있었다. 가장 먼저, 리튬이온배터리처럼 소듐이온배터리더 반응 중에 부피가 팽창하고 용량이 감소한다. "따라서 이번 연구의 목적은 소듐이온배터리의 한계를 극복하고, 효율성을 높이는 방안을 찾는 것이었습니다." 백 교수는 이를 위해 속이 빈 튜브 형태의 섬유질을 개발했다. "부피 팽창을 줄이기 위해서 탄소층을 완충재로 사용한 나노 크기의 새 구조를 만들었죠." 배터리의 부피가 늘어나도 튜브 속의 빈 공간이 이것을 감당할 수 있게 된다는 설명이다. 또 배터리의 효율성을 높일 수 있다는 장점도 있다. 배터리의 효율성은 충전과 방전 속도에 달려 있고, 이 속도는 전자가 얼마나 빠르게 움직일 수 있느냐에 따라 달라진다. 탄소층이 코팅된 나노 튜브는 전자가 양방향으로 빠르게 퍼질 수 있게 만든다. 백 교수는 이렇게 개발한 나노 튜브를 'Sb@C 동축나노튜브'라 이름 붙였다. 실험 결과 Sb@C 동축나노튜브는 배터리 용량과 사이클링 수명을 높이는 것으로 나타났다. 즉, 이번 연구는 부피 팽창으로 인해 발생하는 문제점을 줄이고 충전-방전 반응을 개선해 소듐이온배터리가 리튬이온배터리를 대체할 수 있는 실마리를 제공한 셈이다. ▲ 백운규 교수(에너지공학과)가 개발한 Sb@C 동축나노튜브는 소듐이온배터리의 효율성을 높일 수 있다. 학생들과 함께 진로 고민하는 교육자 될 것 백운규 교수는 반도체 분야에서 사용되는 나노 입자에 관한 실용적 연구를 다수 진행했다. 백 교수가 진행한 연구의 대부분은 실제 산업에서 필요한 기술을 개발하는 데 초점을 맞추고 있다. "저는 사회에 기여할 수 있는 실용적인 연구를 하는 것이 제 의무라고 생각합니다. 근본적인 연구도 물론 중요하겠지만, 연구 결과를 실제 사회에 적용할 수 있어야 한다는 원칙을 더 선호하는 편입니다." 그는 학생들에게도 공부에 대한 열정을 주문했다. "오늘날 우리 사회는 한 분야에서 전문 지식을 갖추는 것을 중요하게 생각합니다. 학생들도 공부에 열정을 가졌으면 좋겠어요." 백 교수는 “빠르게 변화하고 있는 사회라지만, 학생들은 원대한 꿈을 갖고 우보의 걸음으로 나아가기를 바란다”고 했다. 24년 간 강단에서 학생들을 만난 백 교수는 마지막으로 “학생들과 진로에 대해 함께 고민하며 도움을 주는 교육자가 되고 싶다”고 전했다. ▲ 백운규 교수는 "훌륭한 교수진이 많은데 이달의 연구자로 선정돼 기쁘다"고 소감을 전했다. 글/ 추화정기자 lily1702@hanyang.ac.kr

2016-10 03

[학술][이달의 연구자] 건강한 학습 몰입의 중요성을 말하다 (1)

A, B, C라는 세 명의 선생님이 있다. A 선생님은 좋은 대학을 가려면 무조건 수학을 해야한다고 말한다. B 선생님은 수학 성적이 좋지 않을 경우 각오하라며 으름장을 놓는다. C 선생님은 수학자이자 철학자였던 위인들의 이야기를 꺼낸다. 철학자들의 논리적 사고를 수리적 사고에 연관 지어 수학의 중요성을 강조한다. 과연 어느 선생님의 설명이 학생들의 자발적인 학습 의지를 자극할 수 있을까. 장형심 교수(교육학과)의 설명이다. 내재적 동기의 중요성을 말하다 장 교수의 연구는 3가지 주제로 나뉜다. 첫 번째는 학생들의 학습 몰입도에 관한 연구다. 장 교수의 연구에서 '교수자'는 가르치는 사람을 통칭한다. 가정에서는 부모, 학교는 선생, 직장에선 상사다. 장 교수는 교수자가 수학 대상을 어떻게 가르칠 때 몰입도가 높은지를 연구했다. “강제적으로나 보상에 기댄 학습은 건강하지 않은 몰입이에요. 지구력과 창의성이 떨어지고 자신을 성장시켜 주는 자양분들이 활성화되지 않아요.” 장 교수는 스스로가 학습에 가치를 두기 위해 자발적 행동의 근간인 ‘내재적 동기’를 발현시켜야 한다고 했다. 다음 주제는 비흥미 단원의 학습 증진을 위한 연구다. 관심도가 떨어지는 분야를 학습해야 할 때 자율적 동기를 가지고 참여하도록 이끄는 법을 분석했다. 수학을 싫어하는 학생들은 해당 과목을 배우는 걸 시간 낭비라고 생각한다. 이에 장 교수는 “수학을 배워야 하는 본질적인 이유를 내면화시켜 학문의 숨겨진 가치를 가르쳐야 한다”고 말했다 “처벌이나 보상, 혹은 타인에 의해 영향받아 행동하는 것을 통제적 동기라고 해요. 여기서 벗어나 스스로 가치를 인정하고, 자율적 동기를 가질 수 있는 환경을 조성해야 해요.” 맨 처음으로 돌아가, 수학 선생님 A, B, C의 예를 생각해보자. 대학이란 조건이나 처벌을 내세운 A, B 선생님보단 수학을 논리적 사고와 결합해 학문의 본질적인 의미를 가르치는 C 선생님의 설명이 단연 바람직하다. “경험적, 실증적 데이터들을 모아 굉장히 세심하고, 실현 가능한 중재 프로그램을 만드는 것을 하나의 큰 주제로 잡고 있어요.” 마지막으로 장 교수는 선행 연구들을 토대로 특수한 교수 방법 및 총체적인 프로그램과 매뉴얼을 개발하고 있다. 학습에 대한 자발적인 동기와, 이를 이끄는 환경을 구축하기 위한 전체적인 연구 과정의 연장 선상인 셈. 부모들이 아이를 양육하거나, 교사가 학생들을 가르칠 때 주체적인 학습 몰입을 위한 보편적인 길라잡이를 제공한다. ▲장형심 교수(교육학과)와 지난 9월 29일에 연구실에서 만나 교육심리에 관한 다양한 연구에 대해 들었다. 학습 모형 정교화 한 연구로 진일보 장 교수의 이번 논문은 기존 논문에서 한 발짝 더 나아간 성과다. 우선 연구 모형이 정교해졌다. 기존 연구의 프로세스는 몰입의 경로가 하나 뿐이었다. 교수자가 자율성을 지지하면 좋은 몰입이 발생하고 긍정적인 학습 결과가 나온다는 가설 하에 연구가 진행됐다. 반면 이번 연구에서는 학습 비몰입의 경로를 추가했다. 기존의 연구가 건강한 학습 결과와 긍정적 변화의 기본 틀을 보여줬다면, 이번에는 좌절과 비관적인 상황이 발생하는 항목을 추가해 몰입-비몰입의 경로를 이중으로 다뤘다. 또 하나의 차이점은 학습자가 교수자에게 영향을 주는 현상이 발견됐다는 것이다. 교수자는 학습자에 비해 권위적이기 때문에 학습자로부터의 영향을 받지 않는다는 가정이 있었다. 하지만 연구 결과, 학습자도 교수자에게 매우 큰 영향을 미친다는 상보적 관계가 드러났다. 선생님이 더 자율적이거나, 더 통제적으로 변하는데 학생이 영향을 끼치는 것. 의미 있는 결과 뒤에는 부단한 노력이 있었다. 이해력이 요구되는 질문에 답할 수 있는 집단을 선정해 세 차례의 추적 연구를 진행했다. 고등학생 1, 2학년을 500명을 대상으로 1,500회의 설문 조사가 이뤄졌다. 장형심 교수는 본인의 연구에 대해 “막연하게 생각했던 것들을 정밀한 연구와 조사를 통해 검증을 해내는 것에 의의가 있다”며 “실증적인 입증을 바탕으로 교수자와 학습자 간에 중재프로그램을 마련할 수 있다”고 말했다. 교육학자로서 책임 다할 것 장형심 교수는 연구에 대한 원리와 현상에 대한 이해도 중요하지만, 실질적인 프로그램을 만들어내는 것을 목표로 한다. “학습 과정에서 나타나는 현상들은 부모의 양육 장면이나 기업 장면, 교실 장면 등 각기 다른 사회적 맥락에서 나타나요. 다양한 변인들에 맞춰 해당 생태계에서 나오는 특성들을 읽어내고, 그에 맞는 프로그램을 만들어 낼 거예요.” 장 교수는 학습자가 교육을 통해 인식의 가치를 발견하고, 배움의 주체가 될 수 있다고 믿는다. 마지막으로 장 교수는 공부를 앞둔 한양인들에게 조언을 남겼다. “어떤 분야든 공부에 관심이 있는 학생이라면, 그 공부를 하겠다는 열망이 어디서 오는지 들여다봤으면 좋겠어요. 취업, 스펙이 전부가 아닌 진정으로 본인의 성장을 위한 공부를 하세요. 자발적인 동기로 임한다면 밝은 경로가 여러분을 기다릴 거예요.” ▲장형심 교수는 지속적인 연구를 통해 도출해낸 결과를 실질적인 교육 과정에 적용해 교수자-학습자 간의 중재프로그램을 개발하고자 한다. 글/ 김상연 기자 ksy1442@hanyang.ac.kr 사진/ 최민주 기자 lovelymin12@hanyang.ac.kr